Net primary income (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola -7,644,110,001 -11.1% 82
Albania Albania -206,259,464 -31.4% 42
Argentina Argentina -12,766,376,338 -5.45% 90
Armenia Armenia -939,052,546 +44.1% 54
Antigua & Barbuda Antigua & Barbuda -109,593,425 +29.8% 38
Australia Australia -53,722,458,606 -15.2% 109
Austria Austria 1,741,604,866 +800% 14
Azerbaijan Azerbaijan -2,734,735,000 -14.5% 64
Belgium Belgium 11,350,534,506 +37% 10
Bangladesh Bangladesh -4,502,575,818 +16.4% 71
Bulgaria Bulgaria -5,718,170,000 -15.7% 77
Bahrain Bahrain -3,317,553,191 +27.2% 68
Bahamas Bahamas -820,216,647 -4.53% 50
Bosnia & Herzegovina Bosnia & Herzegovina -87,778,145 -44.7% 37
Belarus Belarus -1,811,139,562 -27.7% 59
Belize Belize -129,932,839 +16.9% 39
Brazil Brazil -75,402,651,242 -5.14% 111
Brunei Brunei 490,941,187 +152% 20
Bhutan Bhutan -181,779,102 +24.6% 41
Canada Canada -1,471,099,831 -84.1% 56
Switzerland Switzerland -29,900,340,612 -18.5% 104
Chile Chile -17,000,019,201 +18% 97
China China -130,028,929,456 -2.74% 113
Colombia Colombia -13,152,759,381 -2.08% 91
Cape Verde Cape Verde -51,810,545 +72.8% 35
Costa Rica Costa Rica -8,188,860,221 +15.8% 84
Cyprus Cyprus -3,953,859,313 +5.65% 70
Czechia Czechia -14,786,147,554 -2.76% 93
Germany Germany 161,259,769,833 +9.15% 2
Djibouti Djibouti 115,928,624 +12.6% 26
Dominica Dominica 3,549,943 -917% 29
Denmark Denmark 14,623,448,214 +25.8% 9
Dominican Republic Dominican Republic -6,723,000,000 +23.6% 80
Ecuador Ecuador -3,336,591,146 +18.5% 69
Spain Spain -8,836,481,292 +12.6% 85
Estonia Estonia -930,274,875 -28% 53
Finland Finland 1,176,949,938 +36.6% 15
France France 66,873,547,316 -4.57% 3
United Kingdom United Kingdom -32,022,045,223 -43.9% 106
Georgia Georgia -2,204,097,100 -7.95% 61
Gambia Gambia 82,413,865 -437% 27
Greece Greece -4,668,118,018 +6.11% 74
Grenada Grenada -132,887,973 -4.22% 40
Guatemala Guatemala -1,591,237,240 -17.6% 58
Hong Kong SAR China Hong Kong SAR China 38,541,228,970 +19.4% 4
Honduras Honduras -2,885,543,055 +11.7% 65
Croatia Croatia 346,489,791 -218% 21
Hungary Hungary -5,985,626,658 -12.4% 78
Indonesia Indonesia -35,896,808,407 -0.327% 107
India India -52,101,901,142 +9.6% 108
Iceland Iceland -76,060,890 -113% 36
Israel Israel -4,630,900,000 +42% 72
Italy Italy -17,080,877,824 +25.2% 98
Jamaica Jamaica -349,770,129 +21% 44
Japan Japan 267,333,607,604 +3.17% 1
Kazakhstan Kazakhstan -20,790,541,110 -21.9% 101
Cambodia Cambodia -358,822,546 -62.4% 45
St. Kitts & Nevis St. Kitts & Nevis -12,404,986 -28.2% 33
South Korea South Korea 26,619,300,000 +1.41% 7
Kuwait Kuwait 33,089,591,463 +2.51% 5
St. Lucia St. Lucia -252,427,714 +26.8% 43
Lesotho Lesotho 504,797,684 +6.48% 19
Lithuania Lithuania -2,095,793,326 -14.4% 60
Luxembourg Luxembourg -28,882,159,897 +4.53% 103
Latvia Latvia -732,544,024 -27.1% 48
Moldova Moldova 157,930,000 -40.8% 25
Maldives Maldives -750,084,472 -0.894% 49
Mexico Mexico -54,001,157,208 +23.6% 110
North Macedonia North Macedonia -866,837,435 +7.98% 52
Malta Malta -3,263,718,076 +31.1% 67
Montenegro Montenegro -23,110,074 -132% 34
Mozambique Mozambique -2,520,639,307 +36.8% 63
Malaysia Malaysia -13,546,685,524 +17.3% 92
Namibia Namibia -441,711,236 -23.9% 47
Nigeria Nigeria -6,631,751,525 -37.1% 79
Nicaragua Nicaragua -988,900,000 +22.7% 55
Netherlands Netherlands -17,164,556,302 +77.2% 99
Norway Norway 22,710,592,768 +31% 8
Nepal Nepal 704,749,302 +103% 18
New Zealand New Zealand -9,129,177,778 +18.1% 87
Pakistan Pakistan -9,479,000,000 +32.7% 88
Panama Panama -4,638,419,188 +5.02% 73
Peru Peru -17,378,669,608 +14.9% 100
Philippines Philippines 4,965,503,325 +14.4% 12
Poland Poland -30,881,000,000 -0.416% 105
Portugal Portugal -5,400,533,229 -28.4% 76
Paraguay Paraguay -1,494,179,539 -5.81% 57
Palestinian Territories Palestinian Territories 909,992,454 -71.9% 17
Qatar Qatar -7,218,131,868 +18.8% 81
Romania Romania -10,157,424,589 +8.11% 89
Russia Russia -28,486,140,000 +6.1% 102
Saudi Arabia Saudi Arabia 6,166,803,128 -20% 11
Singapore Singapore -88,990,071,594 -4.28% 112
Solomon Islands Solomon Islands 1,760,788 -93% 30
El Salvador El Salvador -2,256,261,420 +5.48% 62
Suriname Suriname -366,076,511 +14.2% 46
Slovakia Slovakia -3,025,748,115 +11.3% 66
Slovenia Slovenia -842,794,472 +21.8% 51
Sweden Sweden 26,771,131,409 +7.07% 6
Thailand Thailand -15,901,792,730 +22.8% 96
Tajikistan Tajikistan 4,455,403,495 +44.5% 13
Timor-Leste Timor-Leste 231,123,067 +14.2% 23
Tonga Tonga 54,916,001 +9.43% 28
Trinidad & Tobago Trinidad & Tobago 190,999,320 -62.2% 24
Turkey Turkey -15,779,000,000 +38.2% 95
Ukraine Ukraine 330,000,000 -93.5% 22
Uruguay Uruguay -5,236,018,127 -4.86% 75
United States United States -8,884,000,000 -113% 86
Uzbekistan Uzbekistan 1,134,794,800 +14.4% 16
St. Vincent & Grenadines St. Vincent & Grenadines -6,459,199 -386% 31
Vietnam Vietnam -15,693,000,000 -30.1% 94
Samoa Samoa -10,383,270 -27% 32
South Africa South Africa -7,911,053,013 +51.8% 83

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BN.GSR.FCTY.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BN.GSR.FCTY.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))