Mortality rate, infant, male (per 1,000 live births)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 53.8 -2.89% 14
Angola Angola 42.6 -3.18% 28
Albania Albania 9.1 0% 112
Andorra Andorra 2.8 -3.45% 146
United Arab Emirates United Arab Emirates 4.3 -6.52% 133
Argentina Argentina 8.9 -2.2% 113
Armenia Armenia 9.7 -4.9% 111
Antigua & Barbuda Antigua & Barbuda 7.9 -2.47% 118
Australia Australia 3.4 0% 141
Austria Austria 2.8 -3.45% 146
Azerbaijan Azerbaijan 14.2 -5.33% 93
Burundi Burundi 35 -2.51% 41
Belgium Belgium 3.4 -2.86% 141
Benin Benin 51.2 -2.66% 16
Burkina Faso Burkina Faso 49.1 -2.58% 17
Bangladesh Bangladesh 26 0% 58
Bulgaria Bulgaria 5.4 -1.82% 126
Bahrain Bahrain 7.4 +2.78% 119
Bahamas Bahamas 12.2 -1.61% 99
Bosnia & Herzegovina Bosnia & Herzegovina 5.8 -3.33% 124
Belarus Belarus 2.1 -4.55% 151
Belize Belize 12 0% 101
Bolivia Bolivia 22 -3.51% 67
Brazil Brazil 13.8 -1.43% 96
Barbados Barbados 10 -3.85% 109
Brunei Brunei 8.8 -1.12% 114
Bhutan Bhutan 20.2 -2.88% 72
Botswana Botswana 42 -3% 30
Central African Republic Central African Republic 66.8 -65.9% 5
Canada Canada 4.8 0% 131
Switzerland Switzerland 3.8 0% 137
Chile Chile 6.7 +6.35% 121
China China 4.7 -6% 132
Côte d’Ivoire Côte d’Ivoire 52.3 -2.79% 15
Cameroon Cameroon 45.5 -2.99% 23
Congo - Kinshasa Congo - Kinshasa 49 -2.78% 18
Congo - Brazzaville Congo - Brazzaville 30.4 -3.18% 51
Colombia Colombia 12.1 -3.2% 100
Comoros Comoros 37.9 -2.82% 37
Cape Verde Cape Verde 12 -4% 101
Costa Rica Costa Rica 9.8 +4.26% 110
Cuba Cuba 7.3 +4.29% 120
Cyprus Cyprus 3.1 +3.33% 143
Czechia Czechia 2.3 -4.17% 149
Germany Germany 3.3 0% 142
Djibouti Djibouti 48.5 -2.81% 20
Dominica Dominica 35.1 +1.45% 40
Denmark Denmark 3.3 0% 142
Dominican Republic Dominican Republic 30.9 -2.22% 49
Algeria Algeria 21.5 -0.922% 68
Ecuador Ecuador 12.6 -0.787% 98
Egypt Egypt 17.2 -3.37% 79
Eritrea Eritrea 29 -3.33% 53
Spain Spain 2.8 0% 146
Estonia Estonia 1.8 0% 154
Ethiopia Ethiopia 41 -3.3% 31
Finland Finland 2 0% 152
Fiji Fiji 26.1 +1.16% 57
France France 3.7 0% 138
Micronesia (Federated States of) Micronesia (Federated States of) 23.4 -2.9% 63
Gabon Gabon 29.7 -2.3% 52
United Kingdom United Kingdom 4.3 0% 133
Georgia Georgia 8.8 -2.22% 114
Ghana Ghana 31.5 -3.37% 48
Guinea Guinea 68.1 -2.3% 4
Gambia Gambia 38 -2.81% 36
Guinea-Bissau Guinea-Bissau 47.8 -3.04% 22
Equatorial Guinea Equatorial Guinea 54.2 -3.04% 13
Greece Greece 3.4 -2.86% 141
Grenada Grenada 18 -1.1% 77
Guatemala Guatemala 19.8 -2.94% 73
Guyana Guyana 26.8 -2.9% 54
Honduras Honduras 14.7 -3.29% 91
Croatia Croatia 4.2 -2.33% 134
Haiti Haiti 44.4 -2.84% 25
Hungary Hungary 3.5 0% 140
Indonesia Indonesia 18.7 -3.11% 76
India India 24.7 -4.26% 61
Ireland Ireland 3.6 +2.86% 139
Iran Iran 11.2 -3.45% 106
Iraq Iraq 22.8 -2.98% 65
Iceland Iceland 2.1 0% 151
Israel Israel 2.9 0% 145
Italy Italy 2.5 -3.85% 148
Jamaica Jamaica 20.6 +0.488% 71
Jordan Jordan 13.4 -2.9% 97
Japan Japan 1.9 +5.56% 153
Kazakhstan Kazakhstan 8.5 -2.3% 116
Kenya Kenya 38.3 -3.04% 35
Kyrgyzstan Kyrgyzstan 16.7 -1.18% 81
Cambodia Cambodia 22.7 -3.4% 66
Kiribati Kiribati 43.7 -2.24% 26
St. Kitts & Nevis St. Kitts & Nevis 15.7 -3.09% 85
South Korea South Korea 2.5 -3.85% 148
Kuwait Kuwait 8.3 0% 117
Laos Laos 39.2 -3.21% 34
Lebanon Lebanon 17 +5.59% 80
Liberia Liberia 58.1 -2.52% 11
Libya Libya 16.7 +81.5% 81
St. Lucia St. Lucia 15.5 -1.27% 86
Sri Lanka Sri Lanka 5.9 -4.84% 123
Lesotho Lesotho 60.9 -3.64% 10
Lithuania Lithuania 3.1 0% 143
Luxembourg Luxembourg 2.2 0% 150
Latvia Latvia 2.7 -6.9% 147
Morocco Morocco 17 -3.41% 80
Monaco Monaco 2.5 -3.85% 148
Moldova Moldova 15 0% 89
Madagascar Madagascar 48.6 -1.02% 19
Maldives Maldives 5.4 -5.26% 126
Mexico Mexico 11.8 -3.28% 102
Marshall Islands Marshall Islands 26.3 -2.95% 56
North Macedonia North Macedonia 3 -21.1% 144
Mali Mali 62.3 -2.35% 8
Malta Malta 5.2 -1.89% 127
Myanmar (Burma) Myanmar (Burma) 37.7 -3.08% 38
Montenegro Montenegro 2.2 -4.35% 150
Mongolia Mongolia 12.6 -1.56% 98
Mozambique Mozambique 49.1 -2.19% 17
Mauritania Mauritania 34.2 -2.84% 43
Mauritius Mauritius 15 -1.96% 89
Malawi Malawi 32.7 -3.82% 47
Malaysia Malaysia 7.4 0% 119
Namibia Namibia 42.1 -3.44% 29
Niger Niger 72.1 -1.5% 3
Nigeria Nigeria 65.3 -2.1% 6
Nicaragua Nicaragua 11.4 -4.2% 104
Netherlands Netherlands 3.8 0% 137
Norway Norway 2.1 0% 151
Nepal Nepal 25.2 -3.45% 60
Nauru Nauru 9.1 -6.19% 112
New Zealand New Zealand 4.3 -2.27% 133
Oman Oman 9.1 -2.15% 112
Pakistan Pakistan 54.9 -3% 12
Panama Panama 11.4 -4.2% 104
Peru Peru 14.9 -1.32% 90
Philippines Philippines 24.5 -1.61% 62
Palau Palau 21 -1.87% 69
Papua New Guinea Papua New Guinea 34.7 -3.07% 42
Poland Poland 4.1 0% 135
North Korea North Korea 16.1 +1.26% 83
Portugal Portugal 2.8 0% 146
Paraguay Paraguay 16.6 -2.92% 82
Palestinian Territories Palestinian Territories 15.2 +14.3% 87
Qatar Qatar 5.1 -1.92% 128
Romania Romania 5.9 0% 123
Russia Russia 4 -4.76% 136
Rwanda Rwanda 33.7 -1.17% 45
Saudi Arabia Saudi Arabia 5 -3.85% 129
Sudan Sudan 43.6 -2.9% 27
Senegal Senegal 34 -3.68% 44
Singapore Singapore 1.9 0% 153
Solomon Islands Solomon Islands 17.9 -2.72% 78
Sierra Leone Sierra Leone 61.3 -3.16% 9
El Salvador El Salvador 10 -2.91% 109
San Marino San Marino 1.5 0% 155
Somalia Somalia 73.1 -23.4% 2
Serbia Serbia 4.9 -2% 130
South Sudan South Sudan 78.3 +0.128% 1
São Tomé & Príncipe São Tomé & Príncipe 10.4 -4.59% 108
Suriname Suriname 17 -2.86% 80
Slovakia Slovakia 5.6 +1.82% 125
Slovenia Slovenia 2 0% 152
Sweden Sweden 2.2 0% 150
Eswatini Eswatini 47.9 -2.44% 21
Seychelles Seychelles 14.1 -1.4% 94
Syria Syria 20.9 -2.79% 70
Turks & Caicos Islands Turks & Caicos Islands 4.2 -2.33% 134
Chad Chad 64.4 -2.72% 7
Togo Togo 39.5 -2.47% 33
Thailand Thailand 8.9 -2.2% 113
Tajikistan Tajikistan 25.8 -0.769% 59
Turkmenistan Turkmenistan 35.6 -2.2% 39
Timor-Leste Timor-Leste 39.6 -2.46% 32
Tonga Tonga 8.8 -2.22% 114
Trinidad & Tobago Trinidad & Tobago 18.8 -2.59% 75
Tunisia Tunisia 11.3 -8.13% 105
Turkey Turkey 9.7 +12.8% 111
Tuvalu Tuvalu 19.2 -3.03% 74
Tanzania Tanzania 32.9 -3.8% 46
Uganda Uganda 30.5 -3.79% 50
Ukraine Ukraine 8.6 -2.27% 115
Uruguay Uruguay 6.1 -3.17% 122
United States United States 5.9 0% 123
Uzbekistan Uzbekistan 14.3 -3.38% 92
St. Vincent & Grenadines St. Vincent & Grenadines 10.7 -4.46% 107
Venezuela Venezuela 23.3 0% 64
British Virgin Islands British Virgin Islands 11.5 -2.54% 103
Vietnam Vietnam 15.8 -1.86% 84
Vanuatu Vanuatu 15.1 -1.95% 88
Samoa Samoa 14 -2.78% 95
Kosovo Kosovo 9.1 -4.21% 112
Yemen Yemen 38 -2.81% 36
South Africa South Africa 26.4 -0.377% 55
Zambia Zambia 33.7 -4.26% 45
Zimbabwe Zimbabwe 44.9 -3.65% 24

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.IMRT.MA.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.IMRT.MA.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))