Mortality rate, infant, female (per 1,000 live births)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 46.7 -3.31% 11
Angola Angola 33.8 -3.15% 30
Albania Albania 7.4 -1.33% 104
Andorra Andorra 2.2 -4.35% 137
United Arab Emirates United Arab Emirates 3.6 -5.26% 124
Argentina Argentina 7.4 -2.63% 104
Armenia Armenia 8 -4.76% 101
Antigua & Barbuda Antigua & Barbuda 6.7 -1.47% 108
Australia Australia 2.9 0% 130
Austria Austria 2.4 -4% 135
Azerbaijan Azerbaijan 12.4 -4.62% 81
Burundi Burundi 27.8 -2.8% 41
Belgium Belgium 2.7 -3.57% 132
Benin Benin 41.4 -3.04% 15
Burkina Faso Burkina Faso 40.2 -2.9% 17
Bangladesh Bangladesh 22.6 -0.441% 53
Bulgaria Bulgaria 4.6 -2.13% 117
Bahrain Bahrain 6.9 +1.47% 107
Bahamas Bahamas 10.5 -1.87% 88
Bosnia & Herzegovina Bosnia & Herzegovina 4.9 -2% 114
Belarus Belarus 1.7 -5.56% 141
Belize Belize 9.7 0% 92
Bolivia Bolivia 17.9 -3.76% 64
Brazil Brazil 11 -0.901% 87
Barbados Barbados 8.6 -2.27% 97
Brunei Brunei 7.6 -1.3% 102
Bhutan Bhutan 16.8 -2.89% 66
Botswana Botswana 34.1 -2.57% 29
Central African Republic Central African Republic 53.6 -70.6% 6
Canada Canada 4.1 0% 120
Switzerland Switzerland 3.2 0% 128
Chile Chile 5.7 +5.56% 112
China China 4.2 -6.67% 119
Côte d’Ivoire Côte d’Ivoire 40.5 -2.88% 16
Cameroon Cameroon 36.7 -3.17% 23
Congo - Kinshasa Congo - Kinshasa 39.7 -2.93% 19
Congo - Brazzaville Congo - Brazzaville 24.6 -2.77% 49
Colombia Colombia 9.7 -3% 92
Comoros Comoros 33.3 -3.2% 31
Cape Verde Cape Verde 10 -3.85% 90
Costa Rica Costa Rica 8.5 +3.66% 98
Cuba Cuba 5.8 +3.57% 111
Cyprus Cyprus 2.6 0% 133
Czechia Czechia 1.8 -5.26% 140
Germany Germany 2.9 0% 130
Djibouti Djibouti 40.1 -3.61% 18
Dominica Dominica 31 +0.977% 35
Denmark Denmark 2.8 0% 131
Dominican Republic Dominican Republic 25.9 -2.26% 47
Algeria Algeria 17.9 -1.65% 64
Ecuador Ecuador 9.5 -1.04% 94
Egypt Egypt 15 -2.6% 72
Eritrea Eritrea 21.9 -3.1% 55
Spain Spain 2.3 0% 136
Estonia Estonia 1.4 -6.67% 143
Ethiopia Ethiopia 30.2 -3.21% 38
Finland Finland 1.7 0% 141
Fiji Fiji 21.4 +1.42% 56
France France 3.1 0% 129
Micronesia (Federated States of) Micronesia (Federated States of) 18 -3.23% 63
Gabon Gabon 23.2 -2.52% 52
United Kingdom United Kingdom 3.6 0% 124
Georgia Georgia 7 -1.41% 106
Ghana Ghana 24.7 -3.52% 48
Guinea Guinea 54.6 -2.5% 5
Gambia Gambia 29.5 -2.96% 39
Guinea-Bissau Guinea-Bissau 38 -2.81% 22
Equatorial Guinea Equatorial Guinea 44 -3.3% 13
Greece Greece 2.9 -3.33% 130
Grenada Grenada 15.3 -1.29% 70
Guatemala Guatemala 15.8 -3.66% 68
Guyana Guyana 20.8 -2.8% 58
Honduras Honduras 11.7 -3.31% 85
Croatia Croatia 3.5 0% 125
Haiti Haiti 35.9 -2.97% 25
Hungary Hungary 2.8 -3.45% 131
Indonesia Indonesia 15.1 -3.21% 71
India India 24.2 -4.72% 51
Ireland Ireland 3.1 +3.33% 129
Iran Iran 10 -3.85% 90
Iraq Iraq 18.7 -3.11% 62
Iceland Iceland 1.8 0% 140
Israel Israel 2.5 0% 134
Italy Italy 2.1 -4.55% 138
Jamaica Jamaica 16 +0.629% 67
Jordan Jordan 11 -2.65% 87
Japan Japan 1.7 0% 141
Kazakhstan Kazakhstan 6.6 -1.49% 109
Kenya Kenya 30.9 -3.13% 36
Kyrgyzstan Kyrgyzstan 13.1 -0.758% 78
Cambodia Cambodia 17.9 -3.24% 64
Kiribati Kiribati 35.5 -2.2% 26
St. Kitts & Nevis St. Kitts & Nevis 12.8 -2.29% 80
South Korea South Korea 2.1 0% 138
Kuwait Kuwait 6.9 0% 107
Laos Laos 31 -3.13% 35
Lebanon Lebanon 14.9 +5.67% 73
Liberia Liberia 46.7 -2.71% 11
Libya Libya 15.1 +101% 71
St. Lucia St. Lucia 12.9 -1.53% 79
Sri Lanka Sri Lanka 4.7 -4.08% 116
Lesotho Lesotho 49.7 -3.87% 10
Lithuania Lithuania 2.6 0% 133
Luxembourg Luxembourg 1.8 0% 140
Latvia Latvia 2.3 -8% 136
Morocco Morocco 13.9 -3.47% 74
Monaco Monaco 2 -4.76% 139
Moldova Moldova 11.9 -0.833% 83
Madagascar Madagascar 39.5 -1.25% 20
Maldives Maldives 4.6 -4.17% 117
Mexico Mexico 9.6 -4% 93
Marshall Islands Marshall Islands 20.6 -2.83% 59
North Macedonia North Macedonia 2.7 -20.6% 132
Mali Mali 52.4 -2.6% 8
Malta Malta 4.5 -2.17% 118
Myanmar (Burma) Myanmar (Burma) 30.3 -3.19% 37
Montenegro Montenegro 2 -4.76% 139
Mongolia Mongolia 10.1 -1.94% 89
Mozambique Mozambique 41.5 -2.35% 14
Mauritania Mauritania 27.7 -2.81% 42
Mauritius Mauritius 11.9 -2.46% 83
Malawi Malawi 25.9 -3.36% 47
Malaysia Malaysia 6.1 0% 110
Namibia Namibia 34.6 -3.08% 27
Niger Niger 62.2 -1.74% 3
Nigeria Nigeria 54.8 -2.49% 4
Nicaragua Nicaragua 9.1 -4.21% 95
Netherlands Netherlands 3.1 0% 129
Norway Norway 1.7 0% 141
Nepal Nepal 21.2 -3.64% 57
Nauru Nauru 7.5 -5.06% 103
New Zealand New Zealand 3.7 0% 123
Oman Oman 7.5 -1.32% 103
Pakistan Pakistan 45.1 -3.22% 12
Panama Panama 9.7 -4.9% 92
Peru Peru 12.1 -2.42% 82
Philippines Philippines 19.6 -1.51% 61
Palau Palau 17 -1.73% 65
Papua New Guinea Papua New Guinea 29.2 -2.99% 40
Poland Poland 3.4 0% 126
North Korea North Korea 12.9 +1.57% 79
Portugal Portugal 2.3 -4.17% 136
Paraguay Paraguay 13.6 -2.86% 75
Palestinian Territories Palestinian Territories 13.3 +17.7% 76
Qatar Qatar 4.6 -2.13% 117
Romania Romania 4.9 0% 114
Russia Russia 3.3 -5.71% 127
Rwanda Rwanda 27.1 -1.09% 43
Saudi Arabia Saudi Arabia 4.8 -4% 115
Sudan Sudan 34.5 -3.09% 28
Senegal Senegal 26.2 -4.03% 46
Singapore Singapore 1.6 0% 142
Solomon Islands Solomon Islands 15.1 -2.58% 71
Sierra Leone Sierra Leone 50.9 -3.23% 9
El Salvador El Salvador 8.3 -3.49% 100
San Marino San Marino 1.3 0% 144
Somalia Somalia 62.3 -26.1% 2
Serbia Serbia 4 0% 121
South Sudan South Sudan 66.8 0% 1
São Tomé & Príncipe São Tomé & Príncipe 8.4 -3.45% 99
Suriname Suriname 13.3 -2.92% 76
Slovakia Slovakia 4.5 0% 118
Slovenia Slovenia 1.7 0% 141
Sweden Sweden 1.8 -5.26% 140
Eswatini Eswatini 38.9 -2.75% 21
Seychelles Seychelles 12.1 -1.63% 82
Syria Syria 17 -2.3% 65
Turks & Caicos Islands Turks & Caicos Islands 3.8 -2.56% 122
Chad Chad 52.5 -2.96% 7
Togo Togo 32.1 -2.73% 33
Thailand Thailand 7.2 -2.7% 105
Tajikistan Tajikistan 19.8 -1% 60
Turkmenistan Turkmenistan 26.6 -2.21% 45
Timor-Leste Timor-Leste 32.2 -2.42% 32
Tonga Tonga 7.2 -2.7% 105
Trinidad & Tobago Trinidad & Tobago 15.5 -2.52% 69
Tunisia Tunisia 9.8 -8.41% 91
Turkey Turkey 8.5 +14.9% 98
Tuvalu Tuvalu 14.9 -3.25% 73
Tanzania Tanzania 26.8 -3.94% 44
Uganda Uganda 24.5 -3.54% 50
Ukraine Ukraine 7 -1.41% 106
Uruguay Uruguay 4.9 -2% 114
United States United States 5 0% 113
Uzbekistan Uzbekistan 11 -3.51% 87
St. Vincent & Grenadines St. Vincent & Grenadines 9 -4.26% 96
Venezuela Venezuela 19.6 0% 61
British Virgin Islands British Virgin Islands 11.8 -3.28% 84
Vietnam Vietnam 12.1 -1.63% 82
Vanuatu Vanuatu 13.2 -1.49% 77
Samoa Samoa 11.4 -2.56% 86
Kosovo Kosovo 7.5 -3.85% 103
Yemen Yemen 31.1 -3.12% 34
South Africa South Africa 22.4 -0.444% 54
Zambia Zambia 27.8 -4.14% 41
Zimbabwe Zimbabwe 36.1 -3.99% 24

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.IMRT.FE.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.IMRT.FE.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))