Mortality rate, adult, male (per 1,000 male adults)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 116 -1.91% 142
Afghanistan Afghanistan 224 -3.92% 62
Angola Angola 271 -1.47% 36
Albania Albania 96.6 -9.34% 155
Andorra Andorra 42.5 -0.221% 191
United Arab Emirates United Arab Emirates 36.6 -25.4% 192
Argentina Argentina 124 -9.59% 135
Armenia Armenia 183 -9.5% 99
American Samoa American Samoa 209 -1.56% 73
Antigua & Barbuda Antigua & Barbuda 126 -0.847% 134
Austria Austria 75.1 -2.87% 170
Azerbaijan Azerbaijan 145 -13.6% 120
Burundi Burundi 286 -4.76% 24
Belgium Belgium 76.3 -1.82% 169
Benin Benin 289 +0.0553% 21
Burkina Faso Burkina Faso 304 -0.128% 18
Bangladesh Bangladesh 141 -2.37% 122
Bahrain Bahrain 55.3 -4.55% 183
Bahamas Bahamas 208 -0.189% 75
Bosnia & Herzegovina Bosnia & Herzegovina 119 -11.4% 139
Belize Belize 191 -11.3% 92
Bermuda Bermuda 83.8 -3.22% 163
Bolivia Bolivia 229 -8.52% 57
Brazil Brazil 169 -8.14% 110
Barbados Barbados 135 -1.98% 129
Brunei Brunei 137 -29.3% 127
Bhutan Bhutan 139 -1.77% 126
Botswana Botswana 225 -2.78% 61
Central African Republic Central African Republic 393 -60.1% 2
Switzerland Switzerland 52.9 -5.7% 184
Chile Chile 98 -20.8% 154
China China 108 +0.102% 150
Côte d’Ivoire Côte d’Ivoire 320 -1.54% 13
Cameroon Cameroon 275 -8.51% 31
Congo - Kinshasa Congo - Kinshasa 287 -5.78% 23
Congo - Brazzaville Congo - Brazzaville 273 -5.48% 34
Colombia Colombia 123 -13.2% 137
Comoros Comoros 230 -1.33% 56
Cape Verde Cape Verde 162 -1.4% 114
Costa Rica Costa Rica 111 -11.1% 145
Cuba Cuba 127 -2.63% 133
Curaçao Curaçao 135 -0.652% 130
Cayman Islands Cayman Islands 123 -1.62% 136
Cyprus Cyprus 57 -17.7% 181
Djibouti Djibouti 249 -2.42% 49
Dominica Dominica 181 -1.86% 102
Denmark Denmark 68.8 -2.97% 173
Dominican Republic Dominican Republic 172 -0.228% 109
Algeria Algeria 80.5 -2.73% 165
Ecuador Ecuador 141 -7.03% 123
Egypt Egypt 165 -6.88% 113
Eritrea Eritrea 217 -6.41% 69
Ethiopia Ethiopia 246 -2.07% 51
Finland Finland 85.9 -1.44% 161
Fiji Fiji 247 -2.59% 50
Faroe Islands Faroe Islands 62.5 -15% 177
Micronesia (Federated States of) Micronesia (Federated States of) 310 -0.205% 16
Gabon Gabon 246 -3.95% 52
Georgia Georgia 217 -3.15% 68
Ghana Ghana 267 -0.532% 40
Gibraltar Gibraltar 65.9 -0.411% 174
Guinea Guinea 268 -1.11% 38
Gambia Gambia 246 -6.57% 53
Guinea-Bissau Guinea-Bissau 273 -2.15% 35
Equatorial Guinea Equatorial Guinea 261 -1.08% 44
Greece Greece 78.2 -28.4% 168
Grenada Grenada 160 -0.436% 115
Greenland Greenland 222 +0.113% 65
Guatemala Guatemala 202 -10.4% 81
Guam Guam 196 -1.11% 87
Guyana Guyana 265 -1.53% 41
Hong Kong SAR China Hong Kong SAR China 64.7 -10.3% 176
Honduras Honduras 175 -1.01% 108
Croatia Croatia 113 -2.9% 144
Haiti Haiti 281 -6.24% 26
Indonesia Indonesia 189 -0.855% 94
Isle of Man Isle of Man 79.8 -0.41% 166
India India 178 -1.78% 107
Iran Iran 108 -8.65% 151
Iraq Iraq 155 -3% 118
Israel Israel 82.5 +28.5% 164
Jamaica Jamaica 201 +0.432% 82
Jordan Jordan 87.4 -7.37% 160
Japan Japan 65.6 +0.789% 175
Kazakhstan Kazakhstan 206 -9.6% 76
Kenya Kenya 356 -0.633% 9
Kyrgyzstan Kyrgyzstan 219 -1.86% 67
Cambodia Cambodia 208 -0.787% 74
Kiribati Kiribati 222 -0.742% 64
St. Kitts & Nevis St. Kitts & Nevis 215 -12.2% 71
South Korea South Korea 44.3 -34.4% 187
Kuwait Kuwait 52.4 -4.87% 185
Laos Laos 201 -1.33% 84
Lebanon Lebanon 84.6 +3.13% 162
Liberia Liberia 288 -0.45% 22
Libya Libya 180 +12.9% 103
St. Lucia St. Lucia 193 -0.285% 89
Liechtenstein Liechtenstein 43.9 -3.75% 190
Sri Lanka Sri Lanka 129 -2.64% 132
Lesotho Lesotho 471 -2.44% 1
Luxembourg Luxembourg 57.3 -9.61% 180
Macao SAR China Macao SAR China 70.5 +37.5% 172
Saint Martin (French part) Saint Martin (French part) 79.4 +0.188% 167
Morocco Morocco 117 -0.913% 140
Monaco Monaco 31.2 -4.6% 195
Moldova Moldova 277 +6.16% 29
Madagascar Madagascar 259 -4.44% 46
Maldives Maldives 44.2 -5.44% 189
Mexico Mexico 197 -8.39% 85
Marshall Islands Marshall Islands 263 -0.945% 42
North Macedonia North Macedonia 106 -5.18% 152
Mali Mali 279 -1.77% 28
Malta Malta 52 -22.8% 186
Myanmar (Burma) Myanmar (Burma) 263 -3.15% 43
Montenegro Montenegro 135 -5.93% 131
Mongolia Mongolia 274 -0.825% 33
Northern Mariana Islands Northern Mariana Islands 87.9 -2.78% 159
Mozambique Mozambique 315 -3.17% 14
Mauritania Mauritania 205 -0.669% 77
Mauritius Mauritius 185 -8.56% 98
Malawi Malawi 275 -10.8% 30
Malaysia Malaysia 152 -9.62% 119
Namibia Namibia 304 -18.5% 17
New Caledonia New Caledonia 121 -11.8% 138
Niger Niger 224 -6.75% 63
Nigeria Nigeria 356 -1.12% 7
Nicaragua Nicaragua 166 -0.466% 112
Norway Norway 60.7 -2.01% 178
Nepal Nepal 181 -1.64% 101
Nauru Nauru 386 -1.43% 3
Oman Oman 57.8 -14.9% 179
Pakistan Pakistan 201 -0.722% 83
Panama Panama 116 -1.63% 141
Peru Peru 137 +6.02% 128
Philippines Philippines 226 -2.43% 60
Palau Palau 227 -4.96% 59
Papua New Guinea Papua New Guinea 267 -6.43% 39
Poland Poland 144 -9.64% 121
Puerto Rico Puerto Rico 109 -34.4% 149
North Korea North Korea 156 -0.156% 117
Portugal Portugal 93.2 -5.11% 157
Paraguay Paraguay 179 -11.3% 106
Palestinian Territories Palestinian Territories 365 +247% 6
French Polynesia French Polynesia 44.2 -2.73% 188
Qatar Qatar 35.5 -7.38% 194
Romania Romania 180 -4.98% 104
Russia Russia 301 +6.2% 19
Rwanda Rwanda 251 -1.38% 48
Saudi Arabia Saudi Arabia 95.6 -11.8% 156
Sudan Sudan 260 +0.0682% 45
Senegal Senegal 203 -7.64% 79
Singapore Singapore 72 -14.6% 171
Solomon Islands Solomon Islands 185 -0.481% 96
Sierra Leone Sierra Leone 242 -2.63% 54
El Salvador El Salvador 281 -0.627% 27
San Marino San Marino 36.5 -0.249% 193
Somalia Somalia 325 -9.54% 12
Serbia Serbia 141 -0.772% 124
South Sudan South Sudan 356 -3.2% 8
São Tomé & Príncipe São Tomé & Príncipe 275 -3% 32
Suriname Suriname 196 -2.55% 88
Sweden Sweden 56.1 -1.39% 182
Eswatini Eswatini 349 -6.83% 10
Sint Maarten Sint Maarten 111 -1.28% 147
Seychelles Seychelles 192 -6% 91
Syria Syria 168 +4.48% 111
Turks & Caicos Islands Turks & Caicos Islands 110 -0.627% 148
Chad Chad 380 -1.8% 4
Togo Togo 252 -2.35% 47
Thailand Thailand 228 -9.44% 58
Tajikistan Tajikistan 159 -1.91% 116
Turkmenistan Turkmenistan 202 -1.44% 80
Timor-Leste Timor-Leste 204 -1.97% 78
Tonga Tonga 213 -1.31% 72
Trinidad & Tobago Trinidad & Tobago 187 -0.764% 95
Tunisia Tunisia 115 -3.38% 143
Turkey Turkey 111 +1.05% 146
Tuvalu Tuvalu 313 -1.12% 15
Tanzania Tanzania 282 +0.734% 25
Uganda Uganda 271 -2.99% 37
Ukraine Ukraine 300 -3.37% 20
Uruguay Uruguay 140 -12.5% 125
Uzbekistan Uzbekistan 197 -1.54% 86
St. Vincent & Grenadines St. Vincent & Grenadines 221 -0.283% 66
Venezuela Venezuela 215 +0.574% 70
British Virgin Islands British Virgin Islands 102 -0.532% 153
U.S. Virgin Islands U.S. Virgin Islands 179 -3.14% 105
Vietnam Vietnam 181 -0.822% 100
Vanuatu Vanuatu 190 -1.15% 93
Samoa Samoa 185 -0.84% 97
Kosovo Kosovo 90.5 -5.94% 158
Yemen Yemen 193 -13.9% 90
South Africa South Africa 327 -5.24% 11
Zambia Zambia 233 -9.96% 55
Zimbabwe Zimbabwe 366 -1.4% 5

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.AMRT.MA'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.AMRT.MA'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))