Mortality rate, adult, female (per 1,000 female adults)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 59.3 -1.29% 142
Afghanistan Afghanistan 179 -1.7% 36
Angola Angola 184 -2.32% 35
Albania Albania 48.3 -7.95% 161
Andorra Andorra 27.4 -0.451% 191
United Arab Emirates United Arab Emirates 18.5 -24.1% 195
Argentina Argentina 82.4 -8.11% 120
Armenia Armenia 56.4 -10.3% 149
American Samoa American Samoa 121 -0.226% 80
Antigua & Barbuda Antigua & Barbuda 90.8 -0.458% 113
Austria Austria 39.5 -1.27% 169
Azerbaijan Azerbaijan 69.2 -13.7% 131
Burundi Burundi 219 -5.68% 18
Belgium Belgium 47 +0.22% 163
Benin Benin 245 -1.99% 11
Burkina Faso Burkina Faso 214 -4.92% 20
Bangladesh Bangladesh 109 -3.92% 87
Bahrain Bahrain 47.2 -2% 162
Bahamas Bahamas 121 -0.883% 78
Bosnia & Herzegovina Bosnia & Herzegovina 60.2 -10.7% 140
Belize Belize 102 -16.5% 97
Bermuda Bermuda 46.7 -0.41% 164
Bolivia Bolivia 148 -8.04% 60
Brazil Brazil 85.7 -10.2% 117
Barbados Barbados 82.7 -0.96% 119
Brunei Brunei 94.4 -36% 109
Bhutan Bhutan 98.9 -2.38% 102
Botswana Botswana 152 -4.3% 58
Central African Republic Central African Republic 327 -56.6% 3
Switzerland Switzerland 30.7 -5.31% 184
Chile Chile 57.2 -15.1% 147
China China 55.3 +0.804% 152
Côte d’Ivoire Côte d’Ivoire 264 -2.21% 8
Cameroon Cameroon 196 -11.6% 28
Congo - Kinshasa Congo - Kinshasa 221 -6.53% 16
Congo - Brazzaville Congo - Brazzaville 216 -7.23% 19
Colombia Colombia 66.2 -12.1% 133
Comoros Comoros 166 -1.91% 47
Cape Verde Cape Verde 59.7 -1.18% 141
Costa Rica Costa Rica 57.7 -7.6% 145
Cuba Cuba 73.2 -3.23% 127
Curaçao Curaçao 54.9 -0.689% 154
Cayman Islands Cayman Islands 87 -1.52% 115
Cyprus Cyprus 30.4 -24.2% 186
Djibouti Djibouti 175 -2.64% 39
Dominica Dominica 86.5 -0.833% 116
Denmark Denmark 40.9 -2.94% 168
Dominican Republic Dominican Republic 99 +7.26% 100
Algeria Algeria 64.7 -2.67% 136
Ecuador Ecuador 81.4 -6.91% 122
Egypt Egypt 101 -7.31% 98
Eritrea Eritrea 159 -7.7% 50
Ethiopia Ethiopia 149 -2.81% 59
Finland Finland 42.9 -4.48% 165
Fiji Fiji 185 -1.89% 34
Faroe Islands Faroe Islands 36.2 -14.3% 179
Micronesia (Federated States of) Micronesia (Federated States of) 174 -3.17% 40
Gabon Gabon 157 -7.15% 53
Georgia Georgia 74 +1.57% 124
Ghana Ghana 193 -1.83% 30
Gibraltar Gibraltar 34.7 -0.573% 181
Guinea Guinea 235 -1.08% 13
Gambia Gambia 196 -7.82% 27
Guinea-Bissau Guinea-Bissau 194 -3.17% 29
Equatorial Guinea Equatorial Guinea 201 -2.13% 24
Greece Greece 33.6 -30.5% 183
Grenada Grenada 106 -0.672% 93
Greenland Greenland 154 -0.425% 56
Guatemala Guatemala 123 -10.5% 75
Guam Guam 99.1 -0.783% 99
Guyana Guyana 144 -1.9% 64
Hong Kong SAR China Hong Kong SAR China 35 -3.76% 180
Honduras Honduras 112 -1.08% 85
Croatia Croatia 49 -4.77% 160
Haiti Haiti 167 -9.69% 46
Indonesia Indonesia 138 -2.17% 67
Isle of Man Isle of Man 49.4 -0.492% 159
India India 122 -2.81% 77
Iran Iran 54.8 -13.1% 155
Iraq Iraq 110 -2.39% 86
Israel Israel 38.5 +5.39% 172
Jamaica Jamaica 123 -0.107% 76
Jordan Jordan 57.1 -8.45% 148
Japan Japan 36.7 -0.41% 177
Kazakhstan Kazakhstan 82.2 -13.7% 121
Kenya Kenya 275 +0.138% 7
Kyrgyzstan Kyrgyzstan 95.9 -1.68% 107
Cambodia Cambodia 133 -0.666% 70
Kiribati Kiribati 172 -1.66% 43
St. Kitts & Nevis St. Kitts & Nevis 104 -16.1% 95
South Korea South Korea 20.7 -44.4% 193
Kuwait Kuwait 28.1 -18% 190
Laos Laos 136 -1.83% 69
Lebanon Lebanon 57.7 +0.921% 144
Liberia Liberia 245 -1.04% 10
Libya Libya 170 +71% 45
St. Lucia St. Lucia 92.3 +0.115% 111
Liechtenstein Liechtenstein 30.5 -0.476% 185
Sri Lanka Sri Lanka 55.1 -1.95% 153
Lesotho Lesotho 362 -3.34% 1
Luxembourg Luxembourg 33.7 -0.953% 182
Macao SAR China Macao SAR China 36.2 +50.6% 178
Saint Martin (French part) Saint Martin (French part) 37.1 +0.0674% 174
Morocco Morocco 76.8 -0.743% 123
Monaco Monaco 19.4 -0.309% 194
Moldova Moldova 115 +15.1% 82
Madagascar Madagascar 207 -4.96% 22
Maldives Maldives 28.9 -5.3% 188
Mexico Mexico 96.9 -8.44% 105
Marshall Islands Marshall Islands 198 -1.2% 25
North Macedonia North Macedonia 57.9 -2.31% 143
Mali Mali 220 -1.43% 17
Malta Malta 41.3 -1.51% 167
Myanmar (Burma) Myanmar (Burma) 154 -1.37% 57
Montenegro Montenegro 68.9 -6.26% 132
Mongolia Mongolia 109 -1.39% 88
Northern Mariana Islands Northern Mariana Islands 61.6 -2.56% 139
Mozambique Mozambique 178 -6.49% 37
Mauritania Mauritania 154 -1.31% 55
Mauritius Mauritius 99 -7.2% 101
Malawi Malawi 164 -11.6% 48
Malaysia Malaysia 83.8 -10.3% 118
Namibia Namibia 172 -23.9% 42
New Caledonia New Caledonia 64 -13.4% 137
Niger Niger 186 -6.92% 33
Nigeria Nigeria 343 -0.916% 2
Nicaragua Nicaragua 92 -3.27% 112
Norway Norway 39 +1.79% 171
Nepal Nepal 139 -2.13% 65
Nauru Nauru 307 +0.565% 5
Oman Oman 36.7 -24.1% 176
Pakistan Pakistan 130 -1.17% 74
Panama Panama 65.3 -1.56% 134
Peru Peru 92.6 +4.54% 110
Philippines Philippines 132 -3.21% 72
Palau Palau 162 -3.36% 49
Papua New Guinea Papua New Guinea 177 -6.67% 38
Poland Poland 55.8 -8.92% 151
Puerto Rico Puerto Rico 39.3 -38.4% 170
North Korea North Korea 103 -0.73% 96
Portugal Portugal 41.7 -3.56% 166
Paraguay Paraguay 96.4 -15.1% 106
Palestinian Territories Palestinian Territories 171 +166% 44
French Polynesia French Polynesia 25.9 -2.52% 192
Qatar Qatar 28.2 -8.64% 189
Romania Romania 73.1 -6.06% 128
Russia Russia 98.8 -8.38% 103
Rwanda Rwanda 173 -1.76% 41
Saudi Arabia Saudi Arabia 56.2 -8.76% 150
Sudan Sudan 158 -8.59% 51
Senegal Senegal 139 -8.39% 66
Singapore Singapore 37.6 -11.7% 173
Solomon Islands Solomon Islands 147 -1.38% 61
Sierra Leone Sierra Leone 197 -2.22% 26
El Salvador El Salvador 115 -0.517% 81
San Marino San Marino 30.3 +2.02% 187
Somalia Somalia 232 -14.2% 15
Serbia Serbia 70.8 -1.12% 130
South Sudan South Sudan 247 -4.46% 9
São Tomé & Príncipe São Tomé & Príncipe 146 -3.69% 62
Suriname Suriname 121 -2.3% 79
Sweden Sweden 36.9 +3.15% 175
Eswatini Eswatini 232 -8.75% 14
Sint Maarten Sint Maarten 61.8 -2.64% 138
Seychelles Seychelles 95.7 -22% 108
Syria Syria 108 +10% 90
Turks & Caicos Islands Turks & Caicos Islands 72.7 -0.777% 129
Chad Chad 309 -1.84% 4
Togo Togo 240 -2.17% 12
Thailand Thailand 97 -11.3% 104
Tajikistan Tajikistan 105 -1.87% 94
Turkmenistan Turkmenistan 108 -1.58% 91
Timor-Leste Timor-Leste 158 -2.09% 52
Tonga Tonga 112 -2.06% 84
Trinidad & Tobago Trinidad & Tobago 106 -1.28% 92
Tunisia Tunisia 57.6 -3.81% 146
Turkey Turkey 65 +30.5% 135
Tuvalu Tuvalu 190 -1.84% 32
Tanzania Tanzania 202 +0.416% 23
Uganda Uganda 191 -3.3% 31
Ukraine Ukraine 87.6 -6.6% 114
Uruguay Uruguay 73.8 -14.4% 125
Uzbekistan Uzbekistan 114 -4.35% 83
St. Vincent & Grenadines St. Vincent & Grenadines 137 -0.199% 68
Venezuela Venezuela 108 +0.362% 89
British Virgin Islands British Virgin Islands 50.3 -1.08% 158
U.S. Virgin Islands U.S. Virgin Islands 53.1 -5.13% 156
Vietnam Vietnam 73.8 -0.431% 126
Vanuatu Vanuatu 131 -1.26% 73
Samoa Samoa 144 -1.21% 63
Kosovo Kosovo 50.6 +6.61% 157
Yemen Yemen 132 -10.7% 71
South Africa South Africa 213 -4.87% 21
Zambia Zambia 155 -9.8% 54
Zimbabwe Zimbabwe 278 -2.54% 6

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.AMRT.FE'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.AMRT.FE'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))