Manufacturing, value added (current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 6,638,529,307 -2.12% 75
Albania Albania 1,676,748,929 +3.53% 101
Argentina Argentina 95,540,071,949 -9.37% 22
Armenia Armenia 2,696,374,099 +6.04% 90
Australia Australia 96,227,550,642 +3.84% 21
Austria Austria 80,140,458,685 -1.32% 26
Azerbaijan Azerbaijan 3,892,941,176 +4.7% 85
Belgium Belgium 70,932,072,211 -2.25% 29
Benin Benin 2,185,718,278 +10.4% 97
Burkina Faso Burkina Faso 2,323,150,342 +6.92% 94
Bangladesh Bangladesh 98,544,469,168 +0.836% 20
Bahamas Bahamas 99,700,000 -23.7% 122
Bosnia & Herzegovina Bosnia & Herzegovina 3,280,346,920 -10.5% 86
Belarus Belarus 15,429,185,951 -3.93% 56
Brazil Brazil 269,825,744,066 -7.08% 10
Brunei Brunei 1,705,665,653 +8.87% 100
Botswana Botswana 1,076,156,780 -1.43% 113
Switzerland Switzerland 165,689,268,917 +3.85% 14
Chile Chile 29,758,618,474 -5.71% 44
China China 4,661,441,535,071 +0.0569% 1
Côte d’Ivoire Côte d’Ivoire 11,186,901,088 +6.02% 65
Cameroon Cameroon 7,137,110,681 +7.38% 74
Congo - Kinshasa Congo - Kinshasa 12,717,945,885 +5.42% 61
Colombia Colombia 42,279,490,339 +6.2% 37
Cape Verde Cape Verde 134,634,005 +13% 120
Costa Rica Costa Rica 12,361,206,548 +4.93% 62
Cyprus Cyprus 1,517,226,077 +2.99% 105
Czechia Czechia 69,130,874,868 +0.631% 30
Germany Germany 829,955,272,491 -0.114% 3
Dominica Dominica 32,611,111 +28.7% 128
Denmark Denmark 72,218,060,926 +11.2% 28
Dominican Republic Dominican Republic 15,490,441,994 +2.66% 55
Ecuador Ecuador 16,053,574,200 -0.362% 53
Egypt Egypt 54,053,889,062 -9.37% 33
Spain Spain 184,494,998,040 +4.56% 13
Estonia Estonia 4,833,558,317 -1.75% 79
Finland Finland 41,543,927,152 -2.67% 38
Fiji Fiji 519,093,343 +1.89% 117
France France 298,284,249,625 +0.433% 7
Gabon Gabon 4,095,117,046 +4.6% 84
United Kingdom United Kingdom 291,795,431,154 +4.53% 8
Georgia Georgia 2,743,112,689 +6.67% 89
Ghana Ghana 8,342,980,591 -7.03% 70
Guinea-Bissau Guinea-Bissau 198,823,074 +8.07% 119
Equatorial Guinea Equatorial Guinea 3,167,561,464 +4.18% 88
Greece Greece 22,454,556,486 +5.62% 48
Guatemala Guatemala 15,381,059,924 +5.18% 57
Honduras Honduras 5,514,574,978 +5.56% 78
Croatia Croatia 9,967,205,125 -2.54% 67
Haiti Haiti 6,616,692,062 +36.2% 76
Hungary Hungary 35,238,816,031 -4.67% 41
Indonesia Indonesia 265,073,987,435 +3.56% 11
India India 490,403,941,493 +3.53% 4
Ireland Ireland 157,117,331,406 -3.21% 15
Iraq Iraq 11,429,111,077 +40.9% 64
Iceland Iceland 2,545,197,356 -4.97% 92
Israel Israel 60,139,111,897 +0.111% 31
Italy Italy 345,289,219,194 -1.84% 6
Jamaica Jamaica 1,545,306,326 +0.0153% 104
Jordan Jordan 9,446,229,155 +6.96% 68
Kazakhstan Kazakhstan 34,482,687,848 +7.17% 42
Kyrgyzstan Kyrgyzstan 2,204,806,769 +15.6% 96
Cambodia Cambodia 12,888,711,532 +15.6% 59
St. Kitts & Nevis St. Kitts & Nevis 43,051,852 -0.043% 127
Kuwait Kuwait 12,815,326,474 +2.61% 60
Laos Laos 1,494,121,132 +1.98% 106
St. Lucia St. Lucia 74,670,370 -7.14% 124
Sri Lanka Sri Lanka 17,409,393,565 +15.2% 51
Lesotho Lesotho 309,959,395 +4.66% 118
Lithuania Lithuania 11,916,091,102 +2.45% 63
Luxembourg Luxembourg 3,197,481,790 -5.8% 87
Latvia Latvia 4,320,171,190 -3.68% 81
Morocco Morocco 22,073,269,417 +5.47% 49
Moldova Moldova 1,404,530,571 +0.613% 110
Maldives Maldives 110,078,753 -15.6% 121
Mexico Mexico 363,787,714,933 +0.0837% 5
North Macedonia North Macedonia 2,246,367,147 +5.03% 95
Mali Mali 1,961,312,310 +10.3% 98
Malta Malta 1,471,279,048 +7.26% 107
Myanmar (Burma) Myanmar (Burma) 16,683,989,844 +14.3% 52
Mongolia Mongolia 1,335,235,981 +4.31% 111
Mozambique Mozambique 1,626,712,490 +9.1% 103
Mauritania Mauritania 650,293,431 -5.88% 114
Mauritius Mauritius 1,662,039,000 +2.7% 102
Malaysia Malaysia 94,928,152,465 +3.18% 23
Namibia Namibia 1,422,822,721 +3.71% 109
Nigeria Nigeria 25,364,113,924 -54.6% 45
Nicaragua Nicaragua 2,659,803,641 +3.5% 91
Netherlands Netherlands 128,213,378,426 +2.45% 17
Norway Norway 29,936,719,659 +2.5% 43
Nepal Nepal 1,873,584,152 +0.53% 99
Oman Oman 10,790,637,191 +8.62% 66
Pakistan Pakistan 48,912,180,603 +6.45% 35
Panama Panama 4,197,585,700 +1.12% 83
Peru Peru 35,587,382,459 +5.64% 40
Philippines Philippines 72,368,483,741 +2.02% 27
Papua New Guinea Papua New Guinea 530,099,994 +3.6% 116
Poland Poland 140,903,937,743 -0.658% 16
Puerto Rico Puerto Rico 55,632,200,000 +7.79% 32
Portugal Portugal 35,597,314,785 +3.73% 39
Paraguay Paraguay 8,457,072,456 +1.06% 69
Qatar Qatar 17,693,681,319 -4.13% 50
Romania Romania 43,687,956,681 -1.33% 36
Russia Russia 288,112,754,153 +9.12% 9
Rwanda Rwanda 1,274,221,869 -6.81% 112
Saudi Arabia Saudi Arabia 192,669,600,000 -0.508% 12
Senegal Senegal 4,544,422,868 +1.79% 80
Singapore Singapore 89,403,045,726 +4.2% 24
Sierra Leone Sierra Leone 607,109,442 +23.4% 115
El Salvador El Salvador 4,259,880,000 +0.74% 82
Slovakia Slovakia 23,093,579,844 +2.56% 47
Slovenia Slovenia 13,938,445,406 +2.87% 58
Sweden Sweden 84,145,305,860 +1.59% 25
Seychelles Seychelles 90,278,514 -12% 123
Turks & Caicos Islands Turks & Caicos Islands 7,801,000 +1.5% 129
Thailand Thailand 128,038,197,814 -0.645% 18
Tanzania Tanzania 6,303,524,456 -5.07% 77
Uganda Uganda 8,150,076,433 +6.79% 72
Ukraine Ukraine 16,043,825,284 +6.5% 54
Uruguay Uruguay 7,846,191,113 +3.24% 73
United States United States 2,913,114,000,000 +2.56% 2
Uzbekistan Uzbekistan 23,215,945,912 +16.8% 46
St. Vincent & Grenadines St. Vincent & Grenadines 43,544,444 +10.2% 126
Vietnam Vietnam 116,383,680,082 +10.9% 19
Samoa Samoa 56,678,443 +18.5% 125
Kosovo Kosovo 1,457,468,624 +7.77% 108
South Africa South Africa 51,224,111,835 +3.8% 34
Zambia Zambia 2,444,104,588 +4.23% 93
Zimbabwe Zimbabwe 8,221,526,036 +42% 71

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.IND.MANF.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.IND.MANF.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))