Manufacturing, value added (constant 2015 US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 6,117,560,055 +2.43% 75
Albania Albania 968,933,753 -7.49% 114
Argentina Argentina 72,492,558,628 -9.21% 26
Armenia Armenia 1,672,766,384 +4.3% 98
Australia Australia 85,693,501,533 +0.251% 21
Austria Austria 75,488,884,752 -5.46% 25
Azerbaijan Azerbaijan 4,616,956,416 +2.25% 76
Belgium Belgium 58,088,961,159 -2.18% 29
Benin Benin 1,883,250,964 +8.12% 94
Burkina Faso Burkina Faso 1,752,184,783 -1.52% 97
Bangladesh Bangladesh 69,038,623,302 +3.16% 27
Bahamas Bahamas 29,129,492 -52.1% 130
Bosnia & Herzegovina Bosnia & Herzegovina 2,210,158,708 -6.76% 90
Belarus Belarus 15,172,537,063 +5.35% 50
Belize Belize 173,046,461 -0.56% 122
Brazil Brazil 187,987,411,122 +3.75% 10
Brunei Brunei 1,166,475,684 +9.65% 110
Botswana Botswana 1,027,456,811 -2.51% 113
Canada Canada 158,022,875,281 -3.16% 12
Switzerland Switzerland 167,921,770,110 +0.888% 11
Chile Chile 28,031,372,538 +2.75% 41
Cameroon Cameroon 6,192,852,691 +3.13% 74
Congo - Kinshasa Congo - Kinshasa 7,933,060,599 +2.69% 68
Colombia Colombia 40,232,233,415 -2.06% 36
Cape Verde Cape Verde 116,763,641 +8% 123
Costa Rica Costa Rica 10,861,164,972 +5.46% 60
Cyprus Cyprus 1,271,984,524 +2.8% 105
Czechia Czechia 54,137,595,260 -0.838% 32
Germany Germany 729,445,507,445 -2.89% 2
Dominica Dominica 26,534,286 +22.6% 131
Denmark Denmark 68,847,349,510 +13.1% 28
Dominican Republic Dominican Republic 12,345,521,633 +4.31% 55
Ecuador Ecuador 15,315,647,151 -2.54% 49
Egypt Egypt 57,893,888,199 -5.4% 30
Spain Spain 157,708,810,493 +3.54% 13
Estonia Estonia 3,386,115,607 -5.2% 83
Ethiopia Ethiopia 6,885,200,558 +8.4% 71
Finland Finland 34,529,151,095 -0.467% 38
Fiji Fiji 475,724,068 +1.5% 118
France France 266,951,158,044 -0.259% 7
Gabon Gabon 2,990,593,570 +2.43% 85
United Kingdom United Kingdom 283,534,647,936 +0.0527% 4
Georgia Georgia 1,997,694,290 +2.13% 92
Ghana Ghana 8,097,019,793 +3.95% 66
Guinea-Bissau Guinea-Bissau 185,236,490 +8.27% 121
Equatorial Guinea Equatorial Guinea 2,147,731,975 +0.549% 91
Greece Greece 22,984,171,384 +4.1% 45
Guatemala Guatemala 11,700,102,695 +2.41% 57
Hong Kong SAR China Hong Kong SAR China 3,647,876,117 +0.808% 79
Honduras Honduras 4,154,827,476 -2.01% 78
Croatia Croatia 7,874,936,105 -2.15% 69
Haiti Haiti 2,370,028,065 -4.02% 88
Hungary Hungary 25,926,309,187 -4.34% 44
Indonesia Indonesia 244,562,616,186 +4.43% 8
India India 507,470,138,789 +4.29% 3
Ireland Ireland 157,543,846,615 -5.84% 14
Iraq Iraq 12,480,148,259 +42.9% 54
Iceland Iceland 1,941,882,407 -7.79% 93
Israel Israel 54,560,603,352 -1.34% 31
Italy Italy 282,944,173,665 -0.711% 5
Jamaica Jamaica 1,259,845,065 -1.25% 107
Jordan Jordan 8,580,829,184 +4.15% 64
Kazakhstan Kazakhstan 28,110,384,675 +5.9% 40
Kyrgyzstan Kyrgyzstan 1,515,652,809 +4.41% 101
Cambodia Cambodia 11,826,142,149 +11% 56
St. Kitts & Nevis St. Kitts & Nevis 39,403,108 -12.1% 128
Kuwait Kuwait 11,476,049,545 +0.37% 59
Laos Laos 1,876,986,864 +2.4% 95
St. Lucia St. Lucia 63,773,254 -8.06% 126
Sri Lanka Sri Lanka 15,045,859,340 +7.63% 51
Lesotho Lesotho 367,857,353 +4.46% 120
Lithuania Lithuania 10,050,114,757 +4.41% 61
Luxembourg Luxembourg 3,534,521,746 +1.24% 81
Latvia Latvia 3,202,155,885 -4.61% 84
Morocco Morocco 19,932,180,796 +4.1% 47
Moldova Moldova 819,880,490 +1.19% 115
Maldives Maldives 94,837,278 -16.8% 124
Mexico Mexico 270,003,484,622 +0.266% 6
North Macedonia North Macedonia 1,272,831,959 -0.0944% 104
Mali Mali 1,853,145,141 +7.2% 96
Malta Malta 1,135,869,368 +7.31% 111
Myanmar (Burma) Myanmar (Burma) 13,372,286,836 +2% 53
Mongolia Mongolia 1,235,052,281 -1.16% 109
Mozambique Mozambique 1,342,469,958 -2.55% 102
Mauritania Mauritania 520,438,067 -0.6% 117
Mauritius Mauritius 1,624,455,646 +1.48% 100
Malaysia Malaysia 97,795,217,199 +4.16% 20
Namibia Namibia 1,264,706,053 +2.82% 106
Nigeria Nigeria 48,332,650,369 +1.38% 34
Nicaragua Nicaragua 2,423,496,130 +0.452% 87
Netherlands Netherlands 103,461,200,629 -0.801% 19
Norway Norway 27,761,331,008 +1.73% 42
Nepal Nepal 1,630,080,698 -2.02% 99
Oman Oman 8,994,254,780 +8.3% 63
Pakistan Pakistan 49,714,622,705 +3.1% 33
Panama Panama 3,498,141,153 -0.711% 82
Peru Peru 28,151,803,993 +3.9% 39
Philippines Philippines 83,302,330,093 +3.7% 23
Papua New Guinea Papua New Guinea 444,201,403 +5% 119
Poland Poland 113,728,266,348 +0.75% 17
Portugal Portugal 27,414,592,643 +0.0438% 43
Paraguay Paraguay 9,068,292,821 +4.44% 62
Palestinian Territories Palestinian Territories 1,087,200,000 -27.1% 112
Qatar Qatar 14,779,715,225 -4.02% 52
Romania Romania 36,147,302,103 +1.32% 37
Russia Russia 229,077,582,623 +7.64% 9
Rwanda Rwanda 1,244,403,655 +7.4% 108
Saudi Arabia Saudi Arabia 121,996,968,342 +2.5% 15
Senegal Senegal 4,227,247,223 -0.0563% 77
Singapore Singapore 84,059,134,799 +4.26% 22
Sierra Leone Sierra Leone 529,357,570 +4.7% 116
El Salvador El Salvador 3,595,686,374 -0.248% 80
Slovakia Slovakia 16,938,448,885 +1.55% 48
Slovenia Slovenia 11,562,550,690 +3.12% 58
Sweden Sweden 82,163,730,997 +0.897% 24
Seychelles Seychelles 81,399,734 -8.83% 125
Turks & Caicos Islands Turks & Caicos Islands 9,258,544 +1.49% 132
Thailand Thailand 115,250,568,185 -0.51% 16
Tunisia Tunisia 6,682,697,532 -0.48% 72
Tanzania Tanzania 6,276,922,044 +4.54% 73
Uganda Uganda 7,770,425,243 +4.73% 70
Ukraine Ukraine 8,100,717,806 +6.04% 65
Uruguay Uruguay 7,997,045,773 +3.18% 67
United States United States 2,460,282,095,288 +0.998% 1
Uzbekistan Uzbekistan 20,049,196,586 +7.74% 46
St. Vincent & Grenadines St. Vincent & Grenadines 36,459,671 +5% 129
Vietnam Vietnam 104,760,277,311 +10.3% 18
Samoa Samoa 40,035,091 -1.57% 127
Kosovo Kosovo 1,307,266,468 +3.92% 103
South Africa South Africa 40,939,729,368 -0.48% 35
Zambia Zambia 2,318,783,319 +2.33% 89
Zimbabwe Zimbabwe 2,442,092,664 +1.98% 86

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.IND.MANF.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.IND.MANF.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))