Life expectancy at birth, female (years)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 78.8 +0.112% 93
Afghanistan Afghanistan 67.5 +0.446% 180
Angola Angola 67.1 +0.586% 183
Albania Albania 81.4 +0.823% 53
Andorra Andorra 86.1 +0.0372% 10
United Arab Emirates United Arab Emirates 84.2 +2.54% 26
Argentina Argentina 79.9 +1.99% 79
Armenia Armenia 81 +3.45% 58
American Samoa American Samoa 75.8 +0.0581% 121
Antigua & Barbuda Antigua & Barbuda 80.3 +0.175% 70
Australia Australia 85.1 -0.234% 19
Austria Austria 84 +0.478% 28
Azerbaijan Azerbaijan 77.1 +0.6% 106
Burundi Burundi 65.7 +1.2% 189
Belgium Belgium 84.6 +0.834% 23
Benin Benin 62.2 +0.742% 200
Burkina Faso Burkina Faso 63.2 +1.06% 198
Bangladesh Bangladesh 76.4 +0.423% 117
Bulgaria Bulgaria 79.6 +2.18% 83
Bahrain Bahrain 82 +0.218% 48
Bahamas Bahamas 78.2 +0.124% 99
Bosnia & Herzegovina Bosnia & Herzegovina 80.9 +0.217% 60
Belarus Belarus 79.1 +0.0797% 90
Belize Belize 76.5 +1.85% 115
Bermuda Bermuda 85.7 +0.206% 14
Bolivia Bolivia 71.1 +1.27% 153
Brazil Brazil 79 +1.14% 91
Barbados Barbados 78.6 +0.436% 96
Brunei Brunei 77.6 +3.67% 104
Bhutan Bhutan 75 +0.325% 126
Botswana Botswana 71.7 +0.633% 148
Central African Republic Central African Republic 59.3 +132% 207
Canada Canada 83.9 +0.419% 30
Switzerland Switzerland 85.9 +0.468% 12
Chile Chile 83.1 +1.86% 41
China China 80.9 -0.255% 59
Côte d’Ivoire Côte d’Ivoire 64.1 +0.629% 193
Cameroon Cameroon 65.9 +2.03% 187
Congo - Kinshasa Congo - Kinshasa 64 +1.46% 194
Congo - Brazzaville Congo - Brazzaville 67.5 +1.25% 182
Colombia Colombia 80.5 +1.23% 68
Comoros Comoros 68.9 +0.459% 174
Cape Verde Cape Verde 79.2 +0.194% 87
Costa Rica Costa Rica 83.4 +1.49% 35
Cuba Cuba 80.5 +0.527% 66
Curaçao Curaçao 80.8 +0.0743% 62
Cayman Islands Cayman Islands 82.9 +0.44% 44
Cyprus Cyprus 83.7 +1.32% 34
Czechia Czechia 82.9 +1.22% 43
Germany Germany 83 0% 42
Djibouti Djibouti 68.5 +0.618% 176
Dominica Dominica 74.5 -0.0362% 128
Denmark Denmark 83.8 +0.721% 32
Dominican Republic Dominican Republic 77 -1.21% 107
Algeria Algeria 77.7 +0.134% 101
Ecuador Ecuador 80.1 +0.838% 74
Egypt Egypt 73.8 +0.777% 136
Eritrea Eritrea 70.7 +1.19% 160
Spain Spain 86.7 +0.931% 6
Estonia Estonia 83.1 +0.972% 40
Ethiopia Ethiopia 70.7 +0.587% 158
Finland Finland 84.4 +0.716% 25
Fiji Fiji 69.4 +0.178% 171
France France 85.9 +0.94% 12
Faroe Islands Faroe Islands 85.5 +0.234% 15
Micronesia (Federated States of) Micronesia (Federated States of) 71.1 +0.539% 154
Gabon Gabon 71.1 +1.01% 156
United Kingdom United Kingdom 83.2 +0.229% 38
Georgia Georgia 79.1 +0.0746% 89
Ghana Ghana 67.9 +0.491% 179
Gibraltar Gibraltar 86.1 +0.0534% 9
Guinea Guinea 61.9 +0.474% 203
Gambia Gambia 67.5 +1.55% 181
Guinea-Bissau Guinea-Bissau 66.4 +0.771% 186
Equatorial Guinea Equatorial Guinea 65.7 +0.613% 190
Greece Greece 84.2 +0.959% 27
Grenada Grenada 78.4 +0.115% 98
Greenland Greenland 73.5 +0.0545% 140
Guatemala Guatemala 74.9 +1.57% 127
Guam Guam 81.4 +0.0774% 54
Guyana Guyana 73.9 +0.369% 134
Hong Kong SAR China Hong Kong SAR China 88.1 +1.52% 2
Honduras Honduras 75.5 +0.207% 124
Croatia Croatia 81.7 +1.24% 51
Haiti Haiti 68.3 +1.59% 177
Hungary Hungary 80.1 +1.01% 77
Indonesia Indonesia 73.3 +0.393% 141
Isle of Man Isle of Man 83.1 +0.053% 39
India India 73.6 +0.446% 139
Ireland Ireland 84.5 +0.356% 24
Iran Iran 79.6 +1.03% 82
Iraq Iraq 74.1 +0.348% 131
Iceland Iceland 84.4 +1.2% 25
Israel Israel 85.5 +0.825% 15
Italy Italy 85.8 +1.18% 13
Jamaica Jamaica 74 +0.0203% 132
Jordan Jordan 80.2 +0.956% 73
Japan Japan 87.1 +0.0574% 4
Kazakhstan Kazakhstan 78.4 +0.826% 97
Kenya Kenya 65.9 +0.0774% 188
Kyrgyzstan Kyrgyzstan 76.5 +0.262% 114
Cambodia Cambodia 73.2 +0.157% 142
Kiribati Kiribati 68.2 +0.404% 178
St. Kitts & Nevis St. Kitts & Nevis 76 +2.46% 120
South Korea South Korea 86.4 +0.935% 8
Kuwait Kuwait 83.7 +3.21% 33
Laos Laos 71.3 +0.352% 152
Lebanon Lebanon 79.7 -0.163% 81
Liberia Liberia 63.4 +0.372% 197
Libya Libya 70.4 -8.73% 163
St. Lucia St. Lucia 76.3 0% 118
Liechtenstein Liechtenstein 87.3 +2.34% 3
Sri Lanka Sri Lanka 80.6 +0.177% 65
Lesotho Lesotho 60 +0.971% 206
Lithuania Lithuania 81.7 +2% 51
Luxembourg Luxembourg 85.1 -0.117% 19
Latvia Latvia 80.8 +1.76% 63
Macao SAR China Macao SAR China 86.1 +0.116% 11
Saint Martin (French part) Saint Martin (French part) 83.8 -0.00716% 31
Morocco Morocco 77.6 +0.255% 102
Monaco Monaco 88.5 +0.67% 1
Moldova Moldova 75.5 -0.881% 123
Madagascar Madagascar 65.4 +0.889% 191
Maldives Maldives 82.8 +0.331% 45
Mexico Mexico 77.8 +1.1% 100
Marshall Islands Marshall Islands 69.3 +0.317% 172
North Macedonia North Macedonia 77.6 +1.09% 103
Mali Mali 61.9 +0.606% 202
Malta Malta 85.3 +0.827% 16
Myanmar (Burma) Myanmar (Burma) 70.2 +0.327% 164
Montenegro Montenegro 80.2 +1.78% 71
Mongolia Mongolia 76.9 +0.196% 110
Northern Mariana Islands Northern Mariana Islands 80.7 +0.333% 64
Mozambique Mozambique 66.5 +1.03% 185
Mauritania Mauritania 70.5 +0.317% 162
Mauritius Mauritius 76.9 -0.272% 109
Malawi Malawi 70.6 +1.71% 161
Malaysia Malaysia 79.4 +1.51% 85
Namibia Namibia 71.3 +4.8% 151
New Caledonia New Caledonia 81.3 +1.15% 55
Niger Niger 62.1 +1.28% 201
Nigeria Nigeria 54.7 +0.677% 209
Nicaragua Nicaragua 77.4 +0.628% 105
Netherlands Netherlands 83.4 +0.361% 36
Norway Norway 84.7 +0.594% 22
Nepal Nepal 71.8 +0.387% 146
Nauru Nauru 64 -0.00312% 195
New Zealand New Zealand 84.9 +1.43% 21
Oman Oman 81.9 +3.21% 50
Pakistan Pakistan 70.2 +0.336% 165
Panama Panama 82.6 +0.296% 46
Peru Peru 80.1 +1.77% 75
Philippines Philippines 72.8 +0.515% 144
Palau Palau 71.8 +0.309% 147
Papua New Guinea Papua New Guinea 69.1 +1.17% 173
Poland Poland 82.4 +1.6% 47
Puerto Rico Puerto Rico 85.2 +1.99% 17
North Korea North Korea 75.7 +0.0317% 122
Portugal Portugal 85.2 +0.828% 18
Paraguay Paraguay 77 +2.04% 108
Palestinian Territories Palestinian Territories 71.5 -9.66% 149
French Polynesia French Polynesia 86.5 +0.21% 7
Qatar Qatar 83.4 +0.681% 37
Romania Romania 80.5 +1.64% 67
Russia Russia 78.7 +1.23% 94
Rwanda Rwanda 69.9 +0.375% 166
Saudi Arabia Saudi Arabia 81.2 +1.24% 56
Sudan Sudan 69.6 +1.54% 168
Senegal Senegal 70.8 +1.25% 157
Singapore Singapore 85.2 0% 18
Solomon Islands Solomon Islands 72 +0.234% 145
Sierra Leone Sierra Leone 63.5 +0.766% 196
El Salvador El Salvador 76.3 +0.131% 119
San Marino San Marino 87.1 -0.031% 5
Somalia Somalia 61.4 +9.31% 204
Serbia Serbia 78.7 +1.03% 95
South Sudan South Sudan 60.6 +0.825% 205
São Tomé & Príncipe São Tomé & Príncipe 73.7 +0.599% 137
Suriname Suriname 76.8 +0.438% 111
Slovakia Slovakia 81.5 +1.24% 52
Slovenia Slovenia 85 +1.07% 20
Sweden Sweden 85 +0.236% 20
Eswatini Eswatini 67 +1.66% 184
Sint Maarten Sint Maarten 79.5 +0.312% 84
Seychelles Seychelles 78.8 +1.29% 92
Syria Syria 74.4 -1.05% 129
Turks & Caicos Islands Turks & Caicos Islands 80.3 +0.102% 69
Chad Chad 57 +0.962% 208
Togo Togo 62.9 +0.715% 199
Thailand Thailand 80.9 +1.34% 61
Tajikistan Tajikistan 74 +0.271% 133
Turkmenistan Turkmenistan 72.8 +0.216% 143
Timor-Leste Timor-Leste 69.4 +0.441% 170
Tonga Tonga 76.4 +0.301% 116
Trinidad & Tobago Trinidad & Tobago 76.7 +0.21% 112
Tunisia Tunisia 79.1 +0.555% 88
Turkey Turkey 79.9 -1.07% 80
Tuvalu Tuvalu 70.7 +0.406% 159
Tanzania Tanzania 69.8 +0.215% 167
Uganda Uganda 71.1 +0.811% 155
Ukraine Ukraine 80.2 +0.989% 72
Uruguay Uruguay 81.9 +1.76% 49
United States United States 81.1 +1.12% 57
Uzbekistan Uzbekistan 75.4 +0.073% 125
St. Vincent & Grenadines St. Vincent & Grenadines 74.3 +0.0363% 130
Venezuela Venezuela 76.5 -0.0314% 113
British Virgin Islands British Virgin Islands 80 +0.143% 78
U.S. Virgin Islands U.S. Virgin Islands 83.9 +0.239% 29
Vietnam Vietnam 79.3 +0.0669% 86
Vanuatu Vanuatu 73.9 +0.225% 135
Samoa Samoa 73.7 +0.24% 138
Kosovo Kosovo 80.1 +0.385% 76
Yemen Yemen 71.4 +1.52% 150
South Africa South Africa 69.6 +0.814% 169
Zambia Zambia 68.7 +1.41% 175
Zimbabwe Zimbabwe 65 +0.727% 192

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.LE00.FE.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.LE00.FE.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))