Intentional homicides, male (per 100,000 male)

Source: worldbank.org, 19.12.2024

Year: 2021

Flag Country Value Value change, % Rank
Albania Albania 3.79 +4.42% 39
United Arab Emirates United Arab Emirates 0.522 -33.7% 79
Argentina Argentina 7.96 -13.1% 31
Armenia Armenia 3.74 +31.5% 41
Antigua & Barbuda Antigua & Barbuda 24.7 +36.6% 15
Australia Australia 1.1 -6.95% 65
Austria Austria 0.569 -10.9% 76
Azerbaijan Azerbaijan 2.52 -15.4% 49
Belgium Belgium 1.99 +24% 52
Bulgaria Bulgaria 1.8 +41.5% 54
Bahrain Bahrain 0 89
Bahamas Bahamas 57.9 +81.8% 5
Bosnia & Herzegovina Bosnia & Herzegovina 1.55 -33.3% 58
Belize Belize 56.7 +23.8% 6
Bolivia Bolivia 3.76 -3.63% 40
Barbados Barbados 19.3 -31.7% 20
Canada Canada 3.09 +1.2% 48
Switzerland Switzerland 0.394 -15.6% 81
Chile Chile 6.64 -22% 33
Colombia Colombia 51.5 +13.9% 8
Costa Rica Costa Rica 20.6 +4.15% 19
Cyprus Cyprus 1.44 -10.5% 59
Czechia Czechia 0.386 -47.3% 82
Germany Germany 0.87 -15.8% 71
Dominica Dominica 22.2 -43.1% 18
Denmark Denmark 1.1 -16.2% 64
Dominican Republic Dominican Republic 18.5 +22.4% 23
Algeria Algeria 2.38 -1.06% 51
Ecuador Ecuador 25.5 +85.9% 14
Spain Spain 0.829 +7.55% 72
Estonia Estonia 3.49 -31.3% 42
France France 1.62 +1.54% 57
Ghana Ghana 3.1 +3.86% 47
Greece Greece 1.09 -4.45% 66
Grenada Grenada 6.41 -63.9% 34
Guatemala Guatemala 34.1 +9.58% 11
Guyana Guyana 31 +2.41% 13
Hong Kong SAR China Hong Kong SAR China 0.318 -15.2% 83
Honduras Honduras 69.5 +7.9% 3
Croatia Croatia 0.961 -8.75% 69
Haiti Haiti 24.3 +14.4% 16
Hungary Hungary 1.05 +20% 67
India India 3.35 -0.553% 44
Ireland Ireland 0.607 -44.9% 75
Iceland Iceland 0.527 -0.914% 78
Israel Israel 3.29 +40.8% 46
Italy Italy 0.637 +9.31% 74
Jamaica Jamaica 95.6 +9.66% 1
Jordan Jordan 1.44 -1.89% 60
Japan Japan 0.249 +15.9% 87
Kenya Kenya 7.95 +45.4% 32
St. Kitts & Nevis St. Kitts & Nevis 56.5 +30.3% 7
South Korea South Korea 0.549 -13.4% 77
St. Lucia St. Lucia 69.7 +31.7% 2
Liechtenstein Liechtenstein 5.17 35
Lithuania Lithuania 3.82 -29.8% 38
Latvia Latvia 2.42 -24.2% 50
Macao SAR China Macao SAR China 0 89
Morocco Morocco 3.31 +63.3% 45
Mexico Mexico 50.5 -3.74% 9
Malta Malta 0.73 -67.5% 73
Myanmar (Burma) Myanmar (Burma) 49.8 +910% 10
Montenegro Montenegro 4.25 -13.1% 36
Mongolia Mongolia 9.81 -2.72% 29
Mauritius Mauritius 3.43 -8.34% 43
Namibia Namibia 18.5 +1.55% 22
Nicaragua Nicaragua 19.1 +36% 21
Netherlands Netherlands 0.885 +21.7% 70
Norway Norway 0.477 -19.1% 80
Oman Oman 0.29 -18.3% 84
Panama Panama 23.4 +10.9% 17
Poland Poland 1.05 +9.99% 68
Paraguay Paraguay 13.7 +10.5% 25
Palestinian Territories Palestinian Territories 1.41 +3.49% 62
Qatar Qatar 0.256 -48.7% 86
Romania Romania 1.8 -8.6% 53
Russia Russia 10.8 -7.84% 27
Singapore Singapore 0.129 -20.5% 88
El Salvador El Salvador 33.5 -15.4% 12
Serbia Serbia 1.43 -18.7% 61
Suriname Suriname 9.17 -38.3% 30
Slovakia Slovakia 1.17 -5.89% 63
Slovenia Slovenia 0.282 -40.1% 85
Sweden Sweden 1.69 -11% 56
Turkey Turkey 4.01 -2.16% 37
Uruguay Uruguay 16 -11.6% 24
United States United States 10.8 +4.06% 28
Uzbekistan Uzbekistan 1.76 +2.45% 55
St. Vincent & Grenadines St. Vincent & Grenadines 60.1 +14.8% 4
Zimbabwe Zimbabwe 10.9 +27.2% 26

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'VC.IHR.PSRC.MA.P5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'VC.IHR.PSRC.MA.P5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))