Industry (including construction), value added per worker (constant 2015 US$)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 3,041 -0.359% 162
Angola Angola 37,185 -3.5% 48
Albania Albania 14,593 +3.13% 100
United Arab Emirates United Arab Emirates 92,749 -5.2% 19
Argentina Argentina 28,386 -4.35% 64
Armenia Armenia 21,002 +1.2% 79
Australia Australia 125,605 -4.67% 11
Austria Austria 93,713 -0.458% 18
Azerbaijan Azerbaijan 30,673 -0.469% 57
Burundi Burundi 2,749 -0.864% 164
Belgium Belgium 92,567 -2.45% 20
Benin Benin 2,224 +3.99% 166
Burkina Faso Burkina Faso 3,231 +1.98% 157
Bangladesh Bangladesh 6,968 +4.83% 134
Bulgaria Bulgaria 14,523 -2.73% 101
Bahrain Bahrain 45,906 -3.61% 38
Bahamas Bahamas 42,473 +6.49% 41
Bosnia & Herzegovina Bosnia & Herzegovina 11,715 -2.61% 111
Belarus Belarus 14,013 +8.42% 102
Belize Belize 12,218 -5.26% 109
Bolivia Bolivia 6,691 -1.6% 137
Brazil Brazil 17,656 +2.1% 88
Barbados Barbados 32,770 -2.62% 56
Brunei Brunei 158,746 -2.35% 7
Bhutan Bhutan 13,942 -7.21% 104
Botswana Botswana 43,005 -5.82% 40
Central African Republic Central African Republic 4,308 -11.3% 148
Canada Canada 102,353 -2.71% 16
Switzerland Switzerland 220,476 -2.89% 3
Chile Chile 33,757 +2.94% 54
China China 28,155 +2.91% 66
Côte d’Ivoire Côte d’Ivoire 14,977 +14.4% 97
Cameroon Cameroon 6,727 -0.605% 135
Congo - Kinshasa Congo - Kinshasa 8,553 +10.2% 125
Congo - Brazzaville Congo - Brazzaville 10,252 -2.56% 117
Colombia Colombia 16,955 -3.15% 90
Comoros Comoros 2,899 +2.4% 163
Cape Verde Cape Verde 5,427 +1.04% 142
Costa Rica Costa Rica 35,320 +5.29% 51
Cuba Cuba 19,919 +0.219% 82
Cyprus Cyprus 24,705 +6.66% 73
Czechia Czechia 34,269 -1.3% 53
Germany Germany 79,235 +0.883% 25
Djibouti Djibouti 44,325 +0.9% 39
Denmark Denmark 146,669 +8.47% 8
Dominican Republic Dominican Republic 27,541 -1.95% 67
Algeria Algeria 20,479 +1.73% 81
Ecuador Ecuador 18,890 -2.22% 85
Egypt Egypt 16,888 -2.68% 93
Spain Spain 61,250 -0.336% 30
Estonia Estonia 30,039 -7.7% 61
Ethiopia Ethiopia 7,970 +3.24% 127
Finland Finland 95,255 -3% 17
Fiji Fiji 13,603 -6.98% 105
France France 75,366 +4.2% 26
Gabon Gabon 73,246 +1.92% 27
United Kingdom United Kingdom 91,462 +0.192% 21
Georgia Georgia 19,304 +3.12% 84
Ghana Ghana 8,908 -5.48% 123
Guinea Guinea 16,911 +3.77% 91
Gambia Gambia 3,063 +8.36% 161
Guinea-Bissau Guinea-Bissau 3,197 +8.94% 160
Equatorial Guinea Equatorial Guinea 53,098 -13.7% 33
Greece Greece 52,763 +0.551% 34
Guatemala Guatemala 11,298 -1.33% 113
Guyana Guyana 210,327 +39.8% 4
Hong Kong SAR China Hong Kong SAR China 41,139 +3.08% 43
Honduras Honduras 7,758 +8.23% 129
Croatia Croatia 30,099 +3.4% 60
Haiti Haiti 5,835 -5.41% 140
Hungary Hungary 23,964 -5.22% 74
Indonesia Indonesia 14,691 +2.54% 99
India India 6,120 +11% 138
Ireland Ireland 368,382 -20% 1
Iran Iran 18,370 +5.56% 86
Iraq Iraq 30,581 -6.44% 58
Iceland Iceland 108,720 -4.54% 15
Israel Israel 114,978 -4.09% 14
Italy Italy 67,654 -1.22% 29
Jamaica Jamaica 11,178 +3.72% 114
Jordan Jordan 25,406 +1.35% 71
Japan Japan 87,029 +0.383% 23
Kazakhstan Kazakhstan 39,767 +6.56% 45
Kenya Kenya 5,195 -1.72% 143
Kyrgyzstan Kyrgyzstan 3,406 +6.34% 155
Cambodia Cambodia 5,865 +1.86% 139
South Korea South Korea 85,568 +1.57% 24
Kuwait Kuwait 89,170 -9.83% 22
Laos Laos 26,503 -1.44% 69
Lebanon Lebanon 15,454 -0.214% 96
Liberia Liberia 3,757 +9.59% 152
Libya Libya 56,004 +15.5% 31
St. Lucia St. Lucia 16,626 +4.78% 94
Sri Lanka Sri Lanka 10,442 -7.49% 115
Lesotho Lesotho 2,631 -10.1% 165
Lithuania Lithuania 39,095 -2.37% 46
Luxembourg Luxembourg 209,314 +3.7% 5
Latvia Latvia 28,316 +7.56% 65
Macao SAR China Macao SAR China 39,879 +13.4% 44
Morocco Morocco 11,883 -0.839% 110
Moldova Moldova 9,002 -7.91% 121
Madagascar Madagascar 1,752 -3.73% 167
Maldives Maldives 8,055 +2.21% 126
Mexico Mexico 26,670 -0.096% 68
North Macedonia North Macedonia 11,368 +4.54% 112
Mali Mali 5,192 -2.53% 144
Malta Malta 38,865 -1.46% 47
Myanmar (Burma) Myanmar (Burma) 6,696 -1.26% 136
Montenegro Montenegro 21,001 +3.78% 80
Mongolia Mongolia 12,896 +10% 108
Mozambique Mozambique 3,200 +8.67% 159
Mauritania Mauritania 9,576 +1.47% 118
Mauritius Mauritius 19,457 +2.54% 83
Malawi Malawi 3,358 -1.16% 156
Malaysia Malaysia 30,111 -0.581% 59
Namibia Namibia 22,191 +5.79% 77
Niger Niger 4,027 +0.0878% 150
Nigeria Nigeria 4,548 -6.15% 147
Nicaragua Nicaragua 7,544 +3.84% 131
Netherlands Netherlands 118,176 -4.7% 13
Norway Norway 242,450 +1.14% 2
Nepal Nepal 3,715 -0.0137% 153
New Zealand New Zealand 68,726 -2.91% 28
Oman Oman 46,564 -8.3% 37
Pakistan Pakistan 3,779 -6.14% 151
Panama Panama 53,715 +8.13% 32
Peru Peru 22,231 +2.61% 76
Philippines Philippines 14,008 +1.29% 103
Papua New Guinea Papua New Guinea 29,701 -4.31% 62
Poland Poland 33,537 +2.89% 55
Portugal Portugal 35,319 -2.72% 52
Paraguay Paraguay 25,917 +5.39% 70
Qatar Qatar 121,724 +1.15% 12
Romania Romania 21,324 +0.584% 78
Russia Russia 25,255 +3.84% 72
Rwanda Rwanda 3,658 -1.85% 154
Saudi Arabia Saudi Arabia 138,475 -7.81% 10
Senegal Senegal 4,900 +1.91% 146
Singapore Singapore 198,631 -6.04% 6
Sierra Leone Sierra Leone 5,671 +11% 141
El Salvador El Salvador 10,298 +2.19% 116
Serbia Serbia 16,347 +5.1% 95
São Tomé & Príncipe São Tomé & Príncipe 4,271 -4.3% 149
Suriname Suriname 18,049 +0.142% 87
Slovakia Slovakia 28,533 +1.85% 63
Slovenia Slovenia 49,433 -1.12% 35
Sweden Sweden 142,430 -3.73% 9
Eswatini Eswatini 35,556 +0.0359% 50
Chad Chad 7,174 -0.0978% 133
Togo Togo 3,214 +3.41% 158
Thailand Thailand 16,892 -1.46% 92
Tajikistan Tajikistan 14,817 +5.46% 98
Timor-Leste Timor-Leste 4,935 -58.4% 145
Tonga Tonga 7,429 -10.7% 132
Trinidad & Tobago Trinidad & Tobago 42,103 -4.61% 42
Tunisia Tunisia 9,226 -0.89% 120
Turkey Turkey 35,937 +0.372% 49
Tanzania Tanzania 7,724 +0.419% 130
Uganda Uganda 8,622 +0.0586% 124
Uruguay Uruguay 47,692 -9.55% 36
Uzbekistan Uzbekistan 8,984 +4.54% 122
St. Vincent & Grenadines St. Vincent & Grenadines 17,297 +0.946% 89
Vietnam Vietnam 7,823 +1.47% 128
Samoa Samoa 12,914 -5.1% 107
South Africa South Africa 22,282 -4.29% 75
Zambia Zambia 12,993 -4.03% 106
Zimbabwe Zimbabwe 9,326 -0.504% 119

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.IND.EMPL.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.IND.EMPL.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))