Incidence of malaria (per 1,000 population at risk)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 13.3 +44.3% 48
Angola Angola 225 -5.34% 21
United Arab Emirates United Arab Emirates 0 79
Argentina Argentina 0 79
Armenia Armenia 0 79
Burundi Burundi 245 -8.43% 15
Benin Benin 363 -3.84% 1
Burkina Faso Burkina Faso 353 -0.78% 2
Bangladesh Bangladesh 1.1 -10.6% 63
Belize Belize 0 79
Bolivia Bolivia 2.51 -1.57% 57
Brazil Brazil 3.81 +18.7% 54
Bhutan Bhutan 0 79
Botswana Botswana 0.47 +38.2% 67
Central African Republic Central African Republic 306 -0.271% 6
Côte d’Ivoire Côte d’Ivoire 251 -5.64% 14
Cameroon Cameroon 259 -1.58% 11
Congo - Kinshasa Congo - Kinshasa 313 -1.28% 4
Congo - Brazzaville Congo - Brazzaville 215 -0.093% 22
Colombia Colombia 10.6 +19% 49
Comoros Comoros 24.8 -0.121% 44
Cape Verde Cape Verde 0 79
Costa Rica Costa Rica 0.3 +30.4% 69
Djibouti Djibouti 45 -5.52% 40
Dominican Republic Dominican Republic 0.04 -20% 76
Algeria Algeria 0 79
Ecuador Ecuador 0.06 -53.8% 75
Egypt Egypt 0 79
Eritrea Eritrea 63.4 +55% 35
Ethiopia Ethiopia 109 +82.4% 30
Gabon Gabon 229 +1.21% 18
Ghana Ghana 194 -8.41% 25
Guinea Guinea 308 -1% 5
Gambia Gambia 87.5 -8.39% 32
Guinea-Bissau Guinea-Bissau 104 -6.19% 31
Equatorial Guinea Equatorial Guinea 229 -2.64% 19
Guatemala Guatemala 0.22 +57.1% 73
Guyana Guyana 42.7 +32.4% 41
Honduras Honduras 0.27 -27% 71
Haiti Haiti 2.29 -10.2% 58
Indonesia Indonesia 3.88 -6.28% 53
India India 1.52 -10.1% 61
Iran Iran 2.73 +73.9% 56
Iraq Iraq 0 79
Kenya Kenya 59.5 -4.12% 36
Cambodia Cambodia 0.49 -66% 66
South Korea South Korea 0.18 +63.6% 74
Laos Laos 0.29 -69.1% 70
Liberia Liberia 187 -1.32% 26
Sri Lanka Sri Lanka 0 79
Morocco Morocco 0 79
Madagascar Madagascar 200 +70.8% 24
Mexico Mexico 0.02 -66.7% 77
Mali Mali 346 0% 3
Myanmar (Burma) Myanmar (Burma) 18 +44% 45
Mozambique Mozambique 275 +0.887% 10
Mauritania Mauritania 38.3 -20.1% 43
Malawi Malawi 228 +0.516% 20
Malaysia Malaysia 0 79
Namibia Namibia 8.24 +12.4% 52
Niger Niger 305 0% 7
Nigeria Nigeria 299 0% 8
Nicaragua Nicaragua 1.42 -58.7% 62
Nepal Nepal 0 79
Oman Oman 0 79
Pakistan Pakistan 17.6 +58.9% 47
Panama Panama 3.18 +97.5% 55
Peru Peru 2.19 -19.5% 59
Philippines Philippines 0.23 +91.7% 72
Papua New Guinea Papua New Guinea 147 -9.53% 28
North Korea North Korea 0.31 +47.6% 68
Rwanda Rwanda 53.6 -37.3% 38
Saudi Arabia Saudi Arabia 0 79
Sudan Sudan 68.1 0% 33
Senegal Senegal 66.4 +15.4% 34
Solomon Islands Solomon Islands 237 +12.4% 16
Sierra Leone Sierra Leone 293 -5.89% 9
El Salvador El Salvador 0 79
Somalia Somalia 58.9 +1.01% 37
South Sudan South Sudan 253 -1.8% 13
São Tomé & Príncipe São Tomé & Príncipe 10.2 -42% 50
Suriname Suriname 0 79
Eswatini Eswatini 1.73 +175% 60
Chad Chad 207 -1.46% 23
Togo Togo 230 -3.04% 17
Thailand Thailand 0.67 +45.7% 65
Tajikistan Tajikistan 0 79
Timor-Leste Timor-Leste 0 79
Tanzania Tanzania 128 -2.32% 29
Uganda Uganda 258 -3.37% 12
Venezuela Venezuela 9.53 -12.7% 51
Vietnam Vietnam 0.01 0% 78
Vanuatu Vanuatu 17.9 +108% 46
Yemen Yemen 38.9 -0.461% 42
South Africa South Africa 0.84 +155% 64
Zambia Zambia 177 -1.29% 27
Zimbabwe Zimbabwe 49.4 +70.9% 39

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.MLR.INCD.P3'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.MLR.INCD.P3'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))