Households and NPISHs Final consumption expenditure (current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 44,429,017,547 -7.16% 42
Albania Albania 18,909,299,264 +14.4% 63
Argentina Argentina 431,269,740,477 +1.22% 11
Armenia Armenia 17,158,603,112 +8.98% 64
Australia Australia 897,961,217,369 +3.23% 6
Azerbaijan Azerbaijan 41,197,470,588 +5.36% 46
Benin Benin 12,649,557,983 +6.07% 74
Burkina Faso Burkina Faso 14,088,875,019 +7.34% 72
Bangladesh Bangladesh 315,690,122,033 +5.24% 15
Bulgaria Bulgaria 64,678,130,611 +9.42% 37
Bahamas Bahamas 10,180,300,000 +5.15% 83
Bosnia & Herzegovina Bosnia & Herzegovina 19,558,142,340 +3.74% 61
Belarus Belarus 43,146,215,627 +10.4% 44
Bermuda Bermuda 4,094,200,000 +4.98% 94
Brazil Brazil 1,389,862,075,679 +0.806% 3
Brunei Brunei 4,407,217,205 +5.8% 93
Botswana Botswana 8,787,721,846 +5.54% 86
Central African Republic Central African Republic 2,604,393,909 +4.67% 96
Chile Chile 191,905,690,082 -5.37% 23
Côte d’Ivoire Côte d’Ivoire 57,141,888,294 +4.94% 39
Cameroon Cameroon 38,231,944,043 +5% 50
Congo - Kinshasa Congo - Kinshasa 44,360,685,677 +5.26% 43
Congo - Brazzaville Congo - Brazzaville 7,451,756,880 +10.3% 88
Colombia Colombia 306,122,261,123 +13.5% 17
Comoros Comoros 1,602,264,386 +7.91% 101
Cape Verde Cape Verde 2,068,143,884 +5.94% 98
Costa Rica Costa Rica 60,947,898,678 +9.22% 38
Cyprus Cyprus 21,392,752,384 +5.79% 59
Djibouti Djibouti 2,984,071,951 +7.72% 95
Dominican Republic Dominican Republic 84,191,865,369 +2.63% 32
Ecuador Ecuador 80,881,491,000 +1.72% 33
Egypt Egypt 340,742,808,644 +8.99% 13
Gabon Gabon 7,023,140,234 +5.06% 89
Georgia Georgia 24,097,102,453 +9.55% 58
Ghana Ghana 69,625,673,821 +1.16% 35
Guinea Guinea 17,081,522,392 +7.9% 65
Gambia Gambia 2,086,070,327 +1.33% 97
Guinea-Bissau Guinea-Bissau 1,632,259,986 -0.801% 99
Equatorial Guinea Equatorial Guinea 6,754,876,797 +3.94% 90
Guatemala Guatemala 99,588,845,282 +9.22% 28
Hong Kong SAR China Hong Kong SAR China 274,239,082,256 +2.86% 18
Honduras Honduras 31,897,584,777 +6.79% 53
Croatia Croatia 52,722,559,161 +9.09% 41
Haiti Haiti 25,179,024,800 +26.6% 57
Indonesia Indonesia 773,552,837,989 +3.66% 8
India India 2,405,795,557,862 +9.86% 2
Iran Iran 220,579,892,966 +8.39% 22
Iraq Iraq 115,265,413,265 +7.75% 27
Kenya Kenya 94,000,173,408 +13.1% 31
Cambodia Cambodia 27,708,720,519 +8.49% 56
Libya Libya 15,254,951,774 +4.33% 69
Sri Lanka Sri Lanka 67,994,062,220 +14.7% 36
Macao SAR China Macao SAR China 14,529,856,358 +5.49% 71
Morocco Morocco 94,676,683,288 +6.84% 30
Moldova Moldova 15,803,332,496 +10.3% 67
Madagascar Madagascar 12,162,553,491 +7.08% 76
Mexico Mexico 1,302,381,883,542 +3.96% 4
North Macedonia North Macedonia 11,331,464,833 +4.97% 80
Mali Mali 19,111,656,064 +7.07% 62
Malta Malta 11,343,882,930 +9.26% 79
Montenegro Montenegro 6,155,393,907 +11.8% 92
Mongolia Mongolia 11,741,473,623 +29.8% 77
Mozambique Mozambique 15,468,945,320 -5.36% 68
Mauritius Mauritius 10,262,465,481 +4.23% 82
Malaysia Malaysia 256,508,512,645 +6.11% 20
Namibia Namibia 10,597,686,501 +15.8% 81
Niger Niger 11,562,587,737 +8.3% 78
Nicaragua Nicaragua 15,881,928,102 +14% 66
Nepal Nepal 37,051,405,579 +4.77% 51
Pakistan Pakistan 317,997,807,871 +13% 14
Peru Peru 178,071,671,196 +4.61% 24
Philippines Philippines 351,500,468,925 +5.1% 12
Poland Poland 526,536,111,112 +12.4% 10
Puerto Rico Puerto Rico 95,626,300,000 +4.79% 29
Paraguay Paraguay 29,776,159,234 +4.65% 54
Palestinian Territories Palestinian Territories 13,097,200,000 -25.9% 73
Romania Romania 242,994,041,406 +12% 21
Russia Russia 1,073,209,900,225 +5.17% 5
Rwanda Rwanda 9,243,283,426 -13.5% 85
Saudi Arabia Saudi Arabia 556,685,333,333 +4.9% 9
Sudan Sudan 40,272,082,092 +25.1% 49
Senegal Senegal 21,246,599,626 +2.62% 60
Singapore Singapore 172,365,448,241 +7.96% 25
Sierra Leone Sierra Leone 6,611,809,140 +19.6% 91
El Salvador El Salvador 28,158,340,000 +5.06% 55
Somalia Somalia 15,013,735,310 +10.8% 70
Serbia Serbia 55,895,454,355 +9.77% 40
Seychelles Seychelles 1,616,402,570 +6.96% 100
Chad Chad 12,646,938,609 +4.48% 75
Togo Togo 7,769,495,394 +8.5% 87
Thailand Thailand 306,481,203,443 +3.35% 16
Tunisia Tunisia 40,702,596,775 +7.79% 47
Turkey Turkey 786,593,829,778 +18.5% 7
Tanzania Tanzania 41,675,637,707 -2.6% 45
Uganda Uganda 35,548,448,744 +1.79% 52
Ukraine Ukraine 118,960,080,676 +7.64% 26
United States United States 19,825,338,000,000 +5.33% 1
Uzbekistan Uzbekistan 78,121,781,147 +11.2% 34
Samoa Samoa 862,641,289 +4.84% 102
Kosovo Kosovo 9,395,250,804 +6.69% 84
South Africa South Africa 259,560,944,951 +5.88% 19
Zimbabwe Zimbabwe 40,443,090,181 +50.5% 48

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NE.CON.PRVT.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NE.CON.PRVT.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))