Gross value added at basic prices (GVA) (constant 2015 US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 83,772,553,205 +4.85% 59
Albania Albania 13,414,750,436 +3.24% 114
Andorra Andorra 3,052,101,598 +2.87% 137
Argentina Argentina 487,237,600,886 -1.51% 22
Armenia Armenia 14,782,464,863 +6.9% 108
Australia Australia 1,559,947,109,826 +1.57% 9
Austria Austria 373,050,259,073 -1.38% 31
Azerbaijan Azerbaijan 53,801,179,564 +3.95% 73
Burundi Burundi 3,920,075,344 +22.8% 135
Belgium Belgium 478,049,969,341 +1.03% 23
Benin Benin 17,350,976,029 +7.46% 103
Burkina Faso Burkina Faso 15,948,371,191 +3.97% 107
Bangladesh Bangladesh 324,682,233,217 +4.29% 37
Bulgaria Bulgaria 56,929,366,725 +2.51% 70
Bahamas Bahamas 11,770,382,082 +3.32% 119
Bosnia & Herzegovina Bosnia & Herzegovina 17,465,413,452 +2.31% 101
Belarus Belarus 53,589,165,651 +4.15% 74
Belize Belize 2,369,248,715 +8.29% 138
Brazil Brazil 1,741,842,170,575 +3.09% 7
Brunei Brunei 13,959,057,359 +4.2% 111
Botswana Botswana 16,794,573,170 -3.21% 104
Central African Republic Central African Republic 2,197,436,796 +19.8% 139
Canada Canada 1,721,656,826,140 +1.61% 8
Switzerland Switzerland 788,894,651,632 +1.38% 17
Chile Chile 259,448,360,592 +2.93% 38
Côte d’Ivoire Côte d’Ivoire 70,133,705,915 +5.95% 63
Cameroon Cameroon 39,636,104,177 +3.35% 82
Congo - Kinshasa Congo - Kinshasa 56,503,664,048 +6.81% 72
Congo - Brazzaville Congo - Brazzaville 9,863,863,749 +0.46% 123
Colombia Colombia 326,631,770,421 +1.81% 36
Comoros Comoros 1,264,441,517 +3.4% 146
Cape Verde Cape Verde 1,927,819,235 +7.05% 142
Costa Rica Costa Rica 70,230,050,279 +4.25% 62
Cyprus Cyprus 27,270,976,163 +3.45% 88
Czechia Czechia 200,998,587,933 +0.462% 44
Germany Germany 3,308,143,845,582 -0.274% 2
Djibouti Djibouti 3,562,393,478 +5.95% 136
Dominica Dominica 509,552,879 +1.91% 151
Denmark Denmark 329,957,687,191 +4.01% 34
Dominican Republic Dominican Republic 96,023,265,722 +4.72% 56
Ecuador Ecuador 102,193,936,528 -1.75% 53
Egypt Egypt 460,240,651,094 +2.33% 25
Spain Spain 1,305,539,115,061 +3.55% 11
Estonia Estonia 23,686,697,314 -1.13% 94
Ethiopia Ethiopia 117,296,077,520 +8.05% 52
Finland Finland 220,911,782,471 -0.227% 40
Fiji Fiji 4,354,724,150 +3.83% 134
France France 2,419,332,813,295 +1.37% 5
Gabon Gabon 15,977,971,016 +3.27% 106
United Kingdom United Kingdom 2,930,010,998,454 +1.09% 4
Georgia Georgia 23,275,929,353 +9.84% 95
Ghana Ghana 68,818,198,293 +5.6% 65
Guinea Guinea 13,947,890,835 +5.67% 112
Gambia Gambia 446,717,013 -75.1% 152
Guinea-Bissau Guinea-Bissau 1,634,981,345 +4.85% 145
Equatorial Guinea Equatorial Guinea 9,438,385,941 +0.882% 125
Greece Greece 195,053,797,308 +1.8% 45
Grenada Grenada 972,654,006 +3.7% 147
Guatemala Guatemala 78,349,453,311 +3.42% 60
Guyana Guyana 26,263,514,647 +44.1% 89
Hong Kong SAR China Hong Kong SAR China 326,703,966,563 +2.27% 35
Honduras Honduras 25,219,582,422 +3.54% 92
Croatia Croatia 57,076,636,779 +3.58% 69
Haiti Haiti 12,618,638,253 -4.38% 118
Hungary Hungary 134,311,431,538 +0.299% 48
Indonesia Indonesia 1,184,980,023,492 +5.11% 13
India India 3,145,028,947,090 +6.37% 3
Ireland Ireland 463,093,846,665 +0.69% 24
Iran Iran 507,905,983,913 +3.04% 21
Iraq Iraq 192,469,260,104 -1.55% 46
Iceland Iceland 21,092,048,758 +0.515% 97
Israel Israel 373,058,545,786 +0.846% 30
Italy Italy 1,830,603,720,126 +0.548% 6
Jamaica Jamaica 12,644,976,289 -0.719% 117
Jordan Jordan 41,151,561,023 +2.68% 81
Kazakhstan Kazakhstan 231,294,575,553 +5.1% 39
Kenya Kenya 98,784,448,863 +7.37% 54
Kyrgyzstan Kyrgyzstan 8,537,983,034 +9.01% 127
Cambodia Cambodia 36,026,298,819 +6.15% 83
St. Kitts & Nevis St. Kitts & Nevis 882,346,480 -0.0536% 148
Kuwait Kuwait 129,252,745,742 -2.22% 50
Laos Laos 18,928,581,004 +4.26% 99
Libya Libya 56,807,324,349 -0.6% 71
St. Lucia St. Lucia 1,809,134,678 +3.61% 143
Sri Lanka Sri Lanka 85,709,577,809 +4.63% 58
Lesotho Lesotho 2,103,741,700 +2.17% 140
Lithuania Lithuania 49,411,116,883 +2.77% 75
Luxembourg Luxembourg 63,743,430,228 +0.961% 67
Latvia Latvia 27,570,959,619 -0.572% 86
Morocco Morocco 119,670,218,349 +2.94% 51
Moldova Moldova 8,197,202,175 +0.189% 128
Madagascar Madagascar 13,124,904,901 +4.1% 115
Maldives Maldives 5,743,777,857 +5.66% 132
Mexico Mexico 1,271,716,127,445 +1.45% 12
North Macedonia North Macedonia 10,402,350,904 +2.61% 122
Mali Mali 20,465,752,902 +4.73% 98
Malta Malta 17,459,936,529 +3.84% 102
Montenegro Montenegro 4,396,967,487 +1.71% 133
Mongolia Mongolia 14,024,575,173 +3.26% 110
Mozambique Mozambique 18,482,416,259 +1.93% 100
Mauritania Mauritania 7,328,145,016 +4.06% 130
Mauritius Mauritius 12,989,942,994 +4.48% 116
Malawi Malawi 11,233,246,108 +1.82% 120
Malaysia Malaysia 416,976,418,860 +5.09% 26
Namibia Namibia 11,139,541,301 +3.18% 121
Nigeria Nigeria 560,205,723,214 +3.4% 19
Nicaragua Nicaragua 14,234,701,098 +3.26% 109
Netherlands Netherlands 838,212,009,044 +1.03% 16
Norway Norway 397,756,288,107 +2.38% 27
Nepal Nepal 30,936,524,774 +3.36% 84
Oman Oman 94,036,895,717 +1.65% 57
Pakistan Pakistan 388,418,547,894 +2.5% 28
Panama Panama 75,077,350,268 +2.78% 61
Peru Peru 210,584,905,332 +3.35% 41
Papua New Guinea Papua New Guinea 25,899,328,511 +4.55% 91
Poland Poland 582,920,626,078 +2.22% 18
Portugal Portugal 208,597,948,843 +1.71% 42
Paraguay Paraguay 42,345,416,335 +3.77% 80
Palestinian Territories Palestinian Territories 8,720,200,000 -26.6% 126
Qatar Qatar 176,734,002,249 +2.73% 47
Romania Romania 204,427,964,462 +0.0722% 43
Russia Russia 1,476,913,284,801 +4.4% 10
Rwanda Rwanda 13,898,411,699 +9.05% 113
Saudi Arabia Saudi Arabia 867,842,455,859 +1.73% 15
Sudan Sudan 28,627,982,881 -13.5% 85
Senegal Senegal 25,075,320,542 +6.83% 93
Singapore Singapore 387,528,230,866 +4.36% 29
Sierra Leone Sierra Leone 9,500,437,324 +4% 124
El Salvador El Salvador 25,951,611,916 +1.8% 90
Serbia Serbia 48,308,401,342 +3.87% 76
São Tomé & Príncipe São Tomé & Príncipe 300,527,385 +5.88% 153
Slovakia Slovakia 96,380,291,224 +1.3% 55
Slovenia Slovenia 48,205,661,609 +1.66% 77
Sweden Sweden 517,155,258,244 +1.05% 20
Seychelles Seychelles 1,680,758,484 +3.47% 144
Turks & Caicos Islands Turks & Caicos Islands 1,988,916,857 +5.54% 141
Chad Chad 16,333,470,244 +3% 105
Togo Togo 8,012,444,521 +5.3% 129
Tunisia Tunisia 45,226,586,682 +1.19% 79
Turkey Turkey 1,143,648,743,590 +2.6% 14
Tanzania Tanzania 68,620,942,386 +5.55% 66
Uganda Uganda 46,506,195,157 +5.93% 78
Ukraine Ukraine 69,603,934,776 +3.06% 64
Uruguay Uruguay 58,166,862,255 +3.09% 68
United States United States 12,235,127,416,151 -4.78% 1
Uzbekistan Uzbekistan 129,695,652,474 +6.57% 49
St. Vincent & Grenadines St. Vincent & Grenadines 801,633,957 +4.13% 150
Vietnam Vietnam 373,038,007,345 +7.23% 32
Samoa Samoa 813,780,191 +10.9% 149
Kosovo Kosovo 7,138,642,841 +2.84% 131
South Africa South Africa 330,119,892,956 +0.58% 33
Zambia Zambia 27,521,363,202 +4.21% 87
Zimbabwe Zimbabwe 22,505,969,245 +2.03% 96

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.FCST.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.FCST.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))