Goods imports (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 14,190,242,036 -5.93% 78
Albania Albania 7,867,974,155 +14.1% 86
Argentina Argentina 57,400,134,287 -17.7% 47
Armenia Armenia 15,239,727,137 +36.5% 72
Antigua & Barbuda Antigua & Barbuda 725,601,862 -2.46% 106
Australia Australia 296,670,368,021 +3.04% 22
Austria Austria 196,483,640,270 -6.12% 28
Azerbaijan Azerbaijan 17,167,084,000 +4.7% 70
Belgium Belgium 372,036,034,435 -3.85% 16
Bangladesh Bangladesh 63,646,940,434 +2.39% 44
Bulgaria Bulgaria 51,824,390,000 +0.997% 50
Bahrain Bahrain 20,670,478,723 +1.77% 69
Bahamas Bahamas 4,595,812,200 +12.8% 94
Bosnia & Herzegovina Bosnia & Herzegovina 14,900,927,506 +4.61% 76
Belarus Belarus 44,197,200,000 +6.33% 53
Belize Belize 1,362,002,497 +7.63% 101
Brazil Brazil 274,014,105,305 +8.93% 24
Brunei Brunei 7,364,290,807 -0.954% 88
Bhutan Bhutan 1,285,148,638 -11.2% 102
Canada Canada 573,716,277,612 +0.496% 12
Switzerland Switzerland 367,937,035,062 +1.09% 17
Chile Chile 78,132,721,098 -1.3% 41
China China 2,641,014,638,229 +2.16% 2
Colombia Colombia 60,246,456,266 +1.34% 46
Cape Verde Cape Verde 1,173,415,469 +2.02% 103
Costa Rica Costa Rica 23,165,812,492 +5.09% 67
Cyprus Cyprus 11,798,185,081 -7.35% 80
Czechia Czechia 178,723,425,528 -2.6% 30
Germany Germany 1,222,500,311,104 -2.96% 3
Djibouti Djibouti 4,035,074,969 -9.97% 96
Dominica Dominica 230,750,580 -13.1% 113
Denmark Denmark 131,755,999,137 +1.07% 31
Dominican Republic Dominican Republic 29,808,000,000 +3.45% 61
Ecuador Ecuador 27,885,990,172 -4.75% 64
Spain Spain 456,943,173,913 -0.0312% 14
Estonia Estonia 22,032,747,078 +0.429% 68
Finland Finland 75,916,500,732 -5.7% 42
France France 733,998,706,760 -3.68% 5
United Kingdom United Kingdom 756,074,589,754 +0.748% 4
Georgia Georgia 15,091,738,288 +6.3% 74
Gambia Gambia 1,388,324,740 +15.4% 100
Greece Greece 91,195,123,262 +1.55% 40
Grenada Grenada 561,823,406 +5.09% 108
Guatemala Guatemala 29,131,502,500 +6.26% 63
Hong Kong SAR China Hong Kong SAR China 633,117,545,750 +6.85% 8
Honduras Honduras 14,576,581,969 +1.65% 77
Croatia Croatia 41,510,922,436 +4.53% 55
Hungary Hungary 126,682,035,407 -7.01% 33
Indonesia Indonesia 221,906,967,729 +4.96% 26
India India 726,403,274,000 +6.65% 6
Iceland Iceland 9,295,876,486 +3.79% 83
Israel Israel 96,529,300,000 +3.17% 39
Italy Italy 554,479,564,416 -5.62% 13
Jamaica Jamaica 6,067,023,925 -5.22% 92
Japan Japan 718,736,498,496 -5.86% 7
Kazakhstan Kazakhstan 61,196,257,533 +1.3% 45
Cambodia Cambodia 31,247,259,146 +17.7% 60
St. Kitts & Nevis St. Kitts & Nevis 404,074,074 +7.7% 111
South Korea South Korea 596,069,200,000 -1.63% 11
Kuwait Kuwait 33,443,405,536 +1.26% 57
St. Lucia St. Lucia 848,067,224 +12.7% 104
Lesotho Lesotho 1,667,729,170 +0.279% 98
Lithuania Lithuania 43,808,713,592 -1.55% 54
Luxembourg Luxembourg 29,372,880,882 -0.834% 62
Latvia Latvia 23,318,933,769 -3.32% 66
Moldova Moldova 8,633,440,000 +4.09% 84
Maldives Maldives 3,459,112,657 +4.96% 97
Mexico Mexico 626,009,957,423 +4.49% 9
North Macedonia North Macedonia 10,634,426,651 -0.353% 81
Malta Malta 7,305,121,656 +4.62% 89
Montenegro Montenegro 4,287,309,623 +7.04% 95
Mozambique Mozambique 8,375,147,256 -8.76% 85
Malaysia Malaysia 222,719,569,106 +10.5% 25
Namibia Namibia 6,770,501,180 +9.1% 91
Nigeria Nigeria 39,804,659,168 -16.6% 56
Nicaragua Nicaragua 10,131,300,000 +8.01% 82
Netherlands Netherlands 616,112,851,118 -3.72% 10
Norway Norway 98,256,342,559 +2.27% 38
Nepal Nepal 14,963,045,332 +26.5% 75
New Zealand New Zealand 48,531,180,110 -2.88% 51
Pakistan Pakistan 55,675,000,000 +15.2% 48
Panama Panama 25,140,620,448 -16.3% 65
Peru Peru 52,091,353,653 +4.27% 49
Philippines Philippines 123,755,972,628 +2.03% 34
Poland Poland 366,769,000,000 +2.56% 18
Portugal Portugal 109,270,099,255 +1.46% 35
Paraguay Paraguay 15,835,333,922 +3.21% 71
Palestinian Territories Palestinian Territories 6,873,746,159 -28.7% 90
Qatar Qatar 32,606,868,132 +10.8% 59
Romania Romania 128,926,917,889 +3.23% 32
Russia Russia 300,124,360,000 -0.977% 21
Saudi Arabia Saudi Arabia 215,347,005,775 +12.2% 27
Singapore Singapore 434,897,996,857 +8.12% 15
Solomon Islands Solomon Islands 608,712,649 -3.3% 107
El Salvador El Salvador 15,095,066,348 +5.01% 73
Suriname Suriname 1,650,652,915 +4.99% 99
Slovakia Slovakia 107,225,915,359 -0.158% 36
Slovenia Slovenia 44,992,287,131 +1.53% 52
Sweden Sweden 184,560,754,086 -2.82% 29
Thailand Thailand 277,775,025,939 +6.28% 23
Tajikistan Tajikistan 5,936,267,740 +14.5% 93
Timor-Leste Timor-Leste 840,156,775 +8.71% 105
Tonga Tonga 231,822,618 -0.765% 112
Trinidad & Tobago Trinidad & Tobago 7,505,416,430 +13.4% 87
Turkey Turkey 313,765,000,000 -6.97% 20
Ukraine Ukraine 69,291,000,000 +8.58% 43
Uruguay Uruguay 12,911,731,047 +0.486% 79
United States United States 3,296,238,000,000 +6.04% 1
Uzbekistan Uzbekistan 33,159,965,244 -3.82% 58
St. Vincent & Grenadines St. Vincent & Grenadines 444,863,515 +10.6% 110
Vietnam Vietnam 362,489,000,000 +16.7% 19
Samoa Samoa 447,718,802 +4.29% 109
South Africa South Africa 99,828,489,498 -4.8% 37

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BM.GSR.MRCH.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BM.GSR.MRCH.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))