GDP per person employed (constant 2021 PPP $)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 20,381 +0.868% 118
Albania Albania 41,779 +4.65% 92
United Arab Emirates United Arab Emirates 107,504 -0.604% 28
Argentina Argentina 59,088 -0.836% 67
Armenia Armenia 46,539 +3.85% 83
Australia Australia 114,267 -0.336% 23
Austria Austria 128,887 -1.12% 17
Azerbaijan Azerbaijan 47,519 +3.82% 81
Burundi Burundi 1,940 -0.000354% 167
Belgium Belgium 146,382 +0.08% 11
Benin Benin 8,975 +4.28% 149
Burkina Faso Burkina Faso 9,792 +1.96% 143
Bangladesh Bangladesh 19,977 +2.42% 119
Bulgaria Bulgaria 73,323 +2.84% 53
Bahrain Bahrain 103,996 +2.08% 30
Bahamas Bahamas 67,010 +2.46% 59
Bosnia & Herzegovina Bosnia & Herzegovina 53,407 +3.34% 74
Belarus Belarus 56,968 +4.75% 71
Belize Belize 31,347 +4.68% 103
Bolivia Bolivia 18,384 -0.862% 124
Brazil Brazil 42,229 +2.63% 91
Barbados Barbados 41,377 +3.67% 93
Brunei Brunei 165,413 +3.44% 7
Botswana Botswana 50,517 -5.47% 76
Central African Republic Central African Republic 3,148 -2.13% 166
Canada Canada 109,417 -0.393% 26
Switzerland Switzerland 149,970 +0.121% 9
Chile Chile 65,021 +1.71% 60
China China 45,494 +4.97% 84
Côte d’Ivoire Côte d’Ivoire 17,472 +2.78% 128
Cameroon Cameroon 13,355 +1.01% 134
Congo - Kinshasa Congo - Kinshasa 4,468 +3.3% 161
Congo - Brazzaville Congo - Brazzaville 19,016 -0.784% 122
Colombia Colombia 40,363 +0.5% 96
Comoros Comoros 11,638 +0.536% 139
Cape Verde Cape Verde 26,286 +5.58% 113
Costa Rica Costa Rica 63,701 +3.05% 62
Cyprus Cyprus 68,656 +2.14% 57
Czechia Czechia 96,613 +0.953% 35
Germany Germany 124,097 +0.957% 21
Djibouti Djibouti 40,676 +3.64% 95
Denmark Denmark 145,348 +3.55% 12
Dominican Republic Dominican Republic 54,110 +3.12% 73
Algeria Algeria 61,394 +2.05% 64
Ecuador Ecuador 30,088 -2.11% 106
Egypt Egypt 62,505 +0.398% 63
Spain Spain 109,265 +1.45% 27
Estonia Estonia 81,783 +1.21% 47
Ethiopia Ethiopia 7,239 +4.19% 156
Finland Finland 117,938 -0.178% 22
Fiji Fiji 35,299 +3.05% 99
France France 126,986 +0.866% 20
Gabon Gabon 72,900 +0.962% 54
United Kingdom United Kingdom 107,229 +0.065% 29
Georgia Georgia 56,608 +10.4% 72
Ghana Ghana 17,997 +3.7% 125
Guinea Guinea 13,832 +3.14% 133
Gambia Gambia 11,424 +2.68% 140
Guinea-Bissau Guinea-Bissau 7,182 +1.83% 157
Equatorial Guinea Equatorial Guinea 44,380 -1.92% 85
Greece Greece 93,760 +1.33% 37
Guatemala Guatemala 31,412 +1.21% 102
Guyana Guyana 222,575 +39.9% 3
Hong Kong SAR China Hong Kong SAR China 133,530 +3.09% 14
Honduras Honduras 17,668 +1.56% 126
Croatia Croatia 100,341 +2.78% 33
Haiti Haiti 7,350 -5.09% 155
Hungary Hungary 82,210 +1.12% 46
Indonesia Indonesia 29,636 +3.71% 108
India India 24,468 +3.24% 115
Ireland Ireland 227,161 -0.716% 2
Iran Iran 57,254 +2.38% 70
Iraq Iraq 57,758 -4.1% 68
Iceland Iceland 110,336 -2.94% 25
Israel Israel 103,515 -1.29% 31
Italy Italy 130,122 -0.259% 15
Jamaica Jamaica 19,505 -0.919% 121
Jordan Jordan 43,549 +0.929% 88
Japan Japan 84,535 -0.221% 43
Kazakhstan Kazakhstan 75,506 +4.12% 51
Kenya Kenya 14,613 +1.73% 132
Kyrgyzstan Kyrgyzstan 16,463 +5.92% 130
Cambodia Cambodia 12,521 +4.31% 137
Kuwait Kuwait 76,901 -5.02% 50
Laos Laos 18,894 +2.17% 123
Liberia Liberia 3,676 +1.74% 163
Libya Libya 43,071 -1.92% 90
St. Lucia St. Lucia 47,776 +3.24% 80
Sri Lanka Sri Lanka 37,329 +4.23% 98
Lesotho Lesotho 8,317 +1.19% 150
Lithuania Lithuania 95,157 +2.79% 36
Luxembourg Luxembourg 263,891 +0.438% 1
Latvia Latvia 81,413 +0.917% 48
Macao SAR China Macao SAR China 207,953 +8.08% 5
Morocco Morocco 30,864 +2.09% 104
Moldova Moldova 29,395 +2.3% 109
Madagascar Madagascar 3,306 +1.1% 165
Maldives Maldives 47,805 +4.14% 79
Mexico Mexico 48,617 +0.0422% 78
North Macedonia North Macedonia 64,987 +5.42% 61
Mali Mali 8,054 +1.51% 153
Malta Malta 112,196 +1.3% 24
Myanmar (Burma) Myanmar (Burma) 13,040 -1.74% 135
Montenegro Montenegro 82,463 +2.64% 45
Mongolia Mongolia 43,211 +3.67% 89
Mozambique Mozambique 3,538 -1.48% 164
Mauritania Mauritania 30,496 +1.83% 105
Mauritius Mauritius 61,187 +4.72% 65
Malawi Malawi 4,337 -1.32% 162
Malaysia Malaysia 68,973 +3.11% 56
Namibia Namibia 34,071 +0.644% 101
Niger Niger 4,586 +4.3% 160
Nigeria Nigeria 11,988 +0.45% 138
Nicaragua Nicaragua 17,220 +1.41% 129
Netherlands Netherlands 128,301 +0.381% 18
Norway Norway 173,777 +1.28% 6
Nepal Nepal 19,867 +3.63% 120
New Zealand New Zealand 86,512 -0.954% 41
Oman Oman 74,164 -3.43% 52
Pakistan Pakistan 17,577 +1.18% 127
Panama Panama 79,769 +1.18% 49
Peru Peru 29,766 +1.54% 107
Philippines Philippines 24,097 +4.32% 116
Papua New Guinea Papua New Guinea 12,777 +1.75% 136
Poland Poland 92,678 +3.18% 38
Puerto Rico Puerto Rico 129,842 +2.74% 16
Portugal Portugal 87,624 +0.874% 40
Paraguay Paraguay 34,334 +2.98% 100
Qatar Qatar 149,538 -4.5% 10
Romania Romania 99,043 +0.797% 34
Russia Russia 86,143 +4.71% 42
Rwanda Rwanda 9,326 +5.79% 147
Saudi Arabia Saudi Arabia 134,098 -3.25% 13
Senegal Senegal 14,878 +3.68% 131
Singapore Singapore 222,072 +1.28% 4
Solomon Islands Solomon Islands 4,823 -0.487% 159
Sierra Leone Sierra Leone 9,636 +1.57% 145
El Salvador El Salvador 26,337 +1.15% 112
Somalia Somalia 9,593 +0.221% 146
Serbia Serbia 59,213 +3.43% 66
São Tomé & Príncipe São Tomé & Príncipe 41,226 -1.5% 94
Suriname Suriname 52,024 +1.25% 75
Slovakia Slovakia 83,055 +1.89% 44
Slovenia Slovenia 100,823 +1.3% 32
Sweden Sweden 128,257 +1.46% 19
Eswatini Eswatini 50,289 +0.601% 77
Chad Chad 8,103 -2.28% 152
Togo Togo 8,267 +2.4% 151
Thailand Thailand 38,616 +2.75% 97
Tajikistan Tajikistan 20,501 +6.16% 117
Turkmenistan Turkmenistan 57,513 +0.595% 69
Timor-Leste Timor-Leste 9,675 -4.21% 144
Trinidad & Tobago Trinidad & Tobago 69,901 +2.34% 55
Tunisia Tunisia 43,859 +2.04% 87
Turkey Turkey 91,375 +0.637% 39
Tanzania Tanzania 7,678 +2.22% 154
Uganda Uganda 6,505 +2.66% 158
Uruguay Uruguay 67,011 +2.78% 58
United States United States 153,725 +2.19% 8
Uzbekistan Uzbekistan 28,469 +5.27% 110
St. Vincent & Grenadines St. Vincent & Grenadines 44,063 +3.6% 86
Vietnam Vietnam 25,850 +6.23% 114
Vanuatu Vanuatu 9,266 +1.62% 148
Samoa Samoa 27,514 +9.4% 111
South Africa South Africa 46,906 +0.647% 82
Zambia Zambia 11,371 +0.458% 141
Zimbabwe Zimbabwe 9,827 -0.652% 142

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SL.GDP.PCAP.EM.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SL.GDP.PCAP.EM.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))