GDP per capita, PPP (constant 2021 international $)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 7,344 +1.29% 130
Albania Albania 18,920 +5.16% 87
Andorra Andorra 65,928 +2.01% 16
United Arab Emirates United Arab Emirates 68,585 +0.0104% 14
Argentina Argentina 26,547 -2.06% 71
Armenia Armenia 20,079 +3.48% 82
Antigua & Barbuda Antigua & Barbuda 29,562 +3.82% 64
Australia Australia 60,082 -0.627% 24
Austria Austria 63,314 -1.68% 18
Azerbaijan Azerbaijan 22,072 +3.57% 78
Burundi Burundi 836 +0.849% 184
Belgium Belgium 63,083 +0.258% 20
Benin Benin 3,901 +4.84% 153
Burkina Faso Burkina Faso 2,548 +2.65% 173
Bangladesh Bangladesh 8,487 +2.96% 128
Bulgaria Bulgaria 34,083 +2.85% 57
Bahrain Bahrain 59,129 +2.26% 25
Bahamas Bahamas 36,244 +2.9% 54
Bosnia & Herzegovina Bosnia & Herzegovina 20,429 +3.15% 81
Belarus Belarus 29,038 +4.52% 66
Belize Belize 13,278 +6.6% 110
Bermuda Bermuda 105,323 +2.2% 6
Bolivia Bolivia 9,844 +0.00312% 123
Brazil Brazil 19,648 +2.98% 84
Barbados Barbados 19,946 +3.75% 83
Brunei Brunei 79,184 +3.35% 9
Botswana Botswana 18,069 -4.56% 91
Central African Republic Central African Republic 1,112 -1.86% 183
Canada Canada 56,692 -1.44% 26
Switzerland Switzerland 82,026 -0.335% 8
Chile Chile 30,183 +2.09% 63
China China 23,846 +5.11% 76
Côte d’Ivoire Côte d’Ivoire 6,733 +3.4% 137
Cameroon Cameroon 4,919 +0.997% 147
Congo - Kinshasa Congo - Kinshasa 1,504 +3.27% 180
Congo - Brazzaville Congo - Brazzaville 6,181 +0.149% 140
Colombia Colombia 18,504 +0.656% 90
Comoros Comoros 3,568 +1.45% 158
Cape Verde Cape Verde 9,908 +6.75% 122
Costa Rica Costa Rica 26,973 +3.83% 69
Cyprus Cyprus 53,252 +2.03% 29
Czechia Czechia 47,962 +0.952% 35
Germany Germany 62,830 +0.229% 21
Djibouti Djibouti 6,841 +4.52% 136
Dominica Dominica 18,739 +2.52% 88
Denmark Denmark 73,709 +3.16% 11
Dominican Republic Dominican Republic 24,229 +4.07% 75
Algeria Algeria 15,442 +1.87% 103
Ecuador Ecuador 13,936 -2.84% 107
Egypt Egypt 16,798 +0.64% 95
Spain Spain 48,373 +2.18% 33
Estonia Estonia 41,546 -0.385% 46
Ethiopia Ethiopia 2,884 +4.58% 166
Finland Finland 55,629 -1.1% 27
Fiji Fiji 14,104 +3.31% 106
France France 54,465 +0.828% 28
Micronesia (Federated States of) Micronesia (Federated States of) 3,824 +0.247% 155
Gabon Gabon 18,923 +1.18% 86
United Kingdom United Kingdom 52,518 +0.0287% 31
Georgia Georgia 25,001 +10.7% 72
Ghana Ghana 7,062 +3.72% 132
Guinea Guinea 4,028 +3.17% 152
Gambia Gambia 3,031 +3.37% 164
Guinea-Bissau Guinea-Bissau 2,686 +2.53% 170
Equatorial Guinea Equatorial Guinea 15,454 -1.49% 102
Greece Greece 37,753 +2.44% 51
Grenada Grenada 17,742 +3.58% 93
Guatemala Guatemala 12,641 +2.07% 113
Guyana Guyana 70,297 +42.6% 13
Hong Kong SAR China Hong Kong SAR China 66,171 +2.7% 15
Honduras Honduras 6,586 +1.82% 138
Croatia Croatia 42,631 +3.64% 43
Haiti Haiti 2,801 -5.27% 169
Hungary Hungary 40,702 +0.826% 47
Indonesia Indonesia 14,470 +4.18% 104
India India 9,817 +5.54% 124
Ireland Ireland 115,337 -0.146% 3
Iran Iran 16,224 +1.96% 100
Iraq Iraq 12,725 -3.62% 111
Iceland Iceland 65,645 -2.28% 17
Israel Israel 47,339 -0.396% 36
Italy Italy 53,115 +0.739% 30
Jamaica Jamaica 10,260 -0.697% 121
Jordan Jordan 9,520 +1.48% 125
Japan Japan 46,097 +0.521% 38
Kazakhstan Kazakhstan 35,905 +3.46% 55
Kenya Kenya 5,823 +2.47% 141
Kyrgyzstan Kyrgyzstan 7,046 +7.16% 133
Cambodia Cambodia 7,012 +4.72% 134
Kiribati Kiribati 3,257 +3.71% 161
St. Kitts & Nevis St. Kitts & Nevis 31,271 +0.983% 62
Kuwait Kuwait 45,427 -4.92% 40
Laos Laos 8,611 +2.85% 127
Liberia Liberia 1,658 +2.56% 177
Libya Libya 12,276 -1.62% 115
St. Lucia St. Lucia 24,252 +3.63% 74
Sri Lanka Sri Lanka 13,753 +5.59% 108
Lesotho Lesotho 2,638 +1.62% 171
Lithuania Lithuania 47,169 +2.19% 37
Luxembourg Luxembourg 128,182 -0.651% 2
Latvia Latvia 38,936 +0.36% 50
Macao SAR China Macao SAR China 112,844 +7.51% 4
Morocco Morocco 9,066 +2.22% 126
Moldova Moldova 16,466 +2.97% 96
Madagascar Madagascar 1,657 +1.69% 178
Maldives Maldives 23,351 +4.77% 77
Mexico Mexico 22,033 +0.585% 79
Marshall Islands Marshall Islands 7,212 +6.27% 131
North Macedonia North Macedonia 24,464 +4.8% 73
Mali Mali 2,911 +1.96% 165
Malta Malta 60,470 +1.98% 23
Myanmar (Burma) Myanmar (Burma) 5,276 -1.64% 145
Montenegro Montenegro 27,852 +2.99% 67
Mongolia Mongolia 16,801 +3.57% 94
Mozambique Mozambique 1,495 -1.08% 181
Mauritania Mauritania 6,397 +2.21% 139
Mauritius Mauritius 27,317 +4.82% 68
Malawi Malawi 1,636 -0.763% 179
Malaysia Malaysia 34,072 +3.84% 58
Namibia Namibia 10,281 +1.42% 120
Niger Niger 1,773 +4.92% 176
Nigeria Nigeria 5,665 +1.29% 142
Nicaragua Nicaragua 7,662 +2.2% 129
Netherlands Netherlands 70,902 +0.322% 12
Norway Norway 91,108 +1.14% 7
Nepal Nepal 5,047 +3.82% 146
Nauru Nauru 12,604 +1.15% 114
New Zealand New Zealand 48,163 -1.88% 34
Oman Oman 36,654 -2.8% 52
Pakistan Pakistan 5,531 +1.69% 143
Panama Panama 36,426 +1.57% 53
Peru Peru 15,662 +2.18% 101
Philippines Philippines 10,376 +4.82% 118
Papua New Guinea Papua New Guinea 4,301 +2.26% 150
Poland Poland 45,113 +3.3% 41
Puerto Rico Puerto Rico 44,125 +3.24% 42
Portugal Portugal 41,884 +0.753% 44
Paraguay Paraguay 16,296 +2.97% 99
Palestinian Territories Palestinian Territories 3,846 -28.3% 154
Qatar Qatar 110,946 -4.49% 5
Romania Romania 40,608 +0.762% 48
Russia Russia 41,705 +4.56% 45
Rwanda Rwanda 3,265 +6.58% 160
Saudi Arabia Saudi Arabia 62,677 -2.8% 22
Sudan Sudan 1,872 -14.2% 175
Senegal Senegal 4,496 +4.44% 149
Singapore Singapore 132,570 +2.33% 1
Solomon Islands Solomon Islands 2,527 +0.137% 174
Sierra Leone Sierra Leone 3,093 +1.82% 163
El Salvador El Salvador 11,669 +2.14% 116
Somalia Somalia 1,408 +0.414% 182
Serbia Serbia 26,884 +4.45% 70
São Tomé & Príncipe São Tomé & Príncipe 5,480 -1.1% 144
Suriname Suriname 19,413 +1.94% 85
Slovakia Slovakia 40,347 +2.15% 49
Slovenia Slovenia 48,496 +1.31% 32
Sweden Sweden 63,259 +0.658% 19
Eswatini Eswatini 10,367 +1.62% 119
Sint Maarten Sint Maarten 45,822 +2.07% 39
Seychelles Seychelles 29,242 +2.12% 65
Turks & Caicos Islands Turks & Caicos Islands 33,391 +4.87% 59
Chad Chad 2,606 -1.35% 172
Togo Togo 2,850 +2.97% 168
Thailand Thailand 21,737 +2.58% 80
Tajikistan Tajikistan 4,756 +6.34% 148
Turkmenistan Turkmenistan 17,954 +0.489% 92
Timor-Leste Timor-Leste 4,186 -3.33% 151
Trinidad & Tobago Trinidad & Tobago 31,690 +1.59% 61
Tunisia Tunisia 12,714 +0.718% 112
Turkey Turkey 35,294 +2.95% 56
Tanzania Tanzania 3,713 +2.55% 157
Uganda Uganda 2,882 +3.25% 167
Ukraine Ukraine 16,320 +2.53% 98
Uruguay Uruguay 32,039 +3.15% 60
United States United States 75,492 +1.8% 10
Uzbekistan Uzbekistan 10,450 +4.42% 117
St. Vincent & Grenadines St. Vincent & Grenadines 18,714 +4.79% 89
Vietnam Vietnam 14,415 +6.42% 105
Vanuatu Vanuatu 3,169 +1.63% 162
Samoa Samoa 6,895 +8.74% 135
Kosovo Kosovo 16,381 +15% 97
South Africa South Africa 13,599 -0.669% 109
Zambia Zambia 3,716 +1.16% 156
Zimbabwe Zimbabwe 3,450 +0.229% 159

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.PCAP.PP.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.PCAP.PP.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))