Food production index (2014-2016 = 100)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 111 -2.53% 78
Angola Angola 124 +5.61% 35
Albania Albania 105 +0.457% 105
United Arab Emirates United Arab Emirates 125 -1.55% 34
Argentina Argentina 109 +0.913% 86
Armenia Armenia 83.9 -1.12% 183
Antigua & Barbuda Antigua & Barbuda 90 +11.1% 171
Australia Australia 112 +4.62% 71
Austria Austria 100 -0.0299% 139
Azerbaijan Azerbaijan 129 +1.6% 23
Burundi Burundi 119 -0.142% 48
Belgium Belgium 100 -2.77% 142
Benin Benin 126 +3.7% 32
Burkina Faso Burkina Faso 119 +8.78% 49
Bangladesh Bangladesh 125 +2.97% 33
Bulgaria Bulgaria 101 -8.01% 131
Bahrain Bahrain 129 +3.96% 22
Bahamas Bahamas 99.2 +0.456% 146
Bosnia & Herzegovina Bosnia & Herzegovina 113 +18.5% 66
Belarus Belarus 103 +0.965% 120
Belize Belize 102 +0.689% 121
Bolivia Bolivia 115 -1.29% 57
Brazil Brazil 114 +1.46% 63
Barbados Barbados 103 +14.7% 117
Brunei Brunei 119 +2.45% 47
Bhutan Bhutan 77.8 -22.5% 188
Botswana Botswana 96.9 -1.43% 160
Central African Republic Central African Republic 148 +2.13% 8
Canada Canada 112 +16.9% 77
Switzerland Switzerland 97.4 +3.19% 156
Chile Chile 105 -1.28% 106
China China 112 +1.69% 74
Côte d’Ivoire Côte d’Ivoire 122 +1.58% 41
Cameroon Cameroon 108 +3.26% 90
Congo - Kinshasa Congo - Kinshasa 123 +4.06% 38
Congo - Brazzaville Congo - Brazzaville 106 +1.02% 96
Colombia Colombia 111 +1.54% 81
Comoros Comoros 107 +0.49% 93
Cape Verde Cape Verde 74.8 -1.5% 191
Costa Rica Costa Rica 100 -0.947% 140
Cuba Cuba 71.4 +3.37% 193
Cyprus Cyprus 109 -2.17% 88
Czechia Czechia 97.7 +0.215% 155
Germany Germany 92.7 -1.88% 167
Djibouti Djibouti 133 -1.74% 17
Dominica Dominica 101 -0.0198% 130
Denmark Denmark 104 +0.835% 111
Dominican Republic Dominican Republic 128 +11.2% 28
Algeria Algeria 111 +6.1% 79
Ecuador Ecuador 98.9 -2.78% 148
Egypt Egypt 109 -0.119% 87
Eritrea Eritrea 106 +0.55% 97
Spain Spain 98.8 -15.4% 149
Estonia Estonia 106 +7.59% 103
Ethiopia Ethiopia 116 +2.29% 56
Finland Finland 98.2 +6.17% 152
Fiji Fiji 140 +21.4% 13
France France 94 -2.79% 164
Faroe Islands Faroe Islands 107 +3.7% 94
Micronesia (Federated States of) Micronesia (Federated States of) 122 +2.07% 43
Gabon Gabon 106 +0.897% 101
United Kingdom United Kingdom 101 +0.706% 124
Georgia Georgia 114 -3.23% 65
Ghana Ghana 136 +3.8% 16
Guinea Guinea 145 +4.8% 11
Gambia Gambia 71.1 +8.12% 194
Guinea-Bissau Guinea-Bissau 122 +1.07% 40
Equatorial Guinea Equatorial Guinea 103 +0.564% 112
Greece Greece 103 +2.28% 115
Grenada Grenada 86.7 -8.44% 177
Guatemala Guatemala 108 +0.804% 89
Guyana Guyana 112 +8.6% 76
Hong Kong SAR China Hong Kong SAR China 142 -12.9% 12
Honduras Honduras 107 -1.56% 92
Croatia Croatia 89.5 -8.08% 174
Haiti Haiti 77.9 -1.96% 187
Hungary Hungary 74.7 -18.9% 192
Indonesia Indonesia 117 +4.82% 52
India India 128 +1.36% 29
Ireland Ireland 122 +1.9% 44
Iran Iran 83.9 -6.37% 182
Iraq Iraq 106 -16.7% 95
Iceland Iceland 102 -1.67% 122
Israel Israel 105 +3.98% 104
Italy Italy 97 -2.44% 159
Jamaica Jamaica 113 +7.2% 67
Jordan Jordan 110 +0.264% 83
Japan Japan 100 -0.0996% 141
Kazakhstan Kazakhstan 128 +10.8% 30
Kenya Kenya 112 -8.85% 70
Kyrgyzstan Kyrgyzstan 113 +6.86% 69
Cambodia Cambodia 124 -0.778% 36
Kiribati Kiribati 97.3 +2.88% 157
St. Kitts & Nevis St. Kitts & Nevis 115 +8.67% 58
South Korea South Korea 101 -0.775% 125
Kuwait Kuwait 131 +17.5% 20
Laos Laos 115 +6.94% 60
Lebanon Lebanon 104 +1.64% 109
Liberia Liberia 103 +2.47% 119
Libya Libya 106 +0.427% 102
St. Lucia St. Lucia 90.6 +15.6% 170
Sri Lanka Sri Lanka 99.2 -16.8% 145
Lesotho Lesotho 98.7 -3.42% 150
Lithuania Lithuania 99.5 +3.53% 144
Luxembourg Luxembourg 115 +1.95% 59
Latvia Latvia 104 +2.54% 110
Macao SAR China Macao SAR China 81.3 +14.8% 186
Morocco Morocco 106 -9.02% 98
Moldova Moldova 89.7 -27.2% 173
Madagascar Madagascar 106 +1.93% 100
Maldives Maldives 94.5 -0.359% 163
Mexico Mexico 117 +2.56% 53
Marshall Islands Marshall Islands 90.8 +0.888% 169
North Macedonia North Macedonia 101 +5.93% 132
Mali Mali 136 +7.53% 14
Malta Malta 76 +0.463% 190
Myanmar (Burma) Myanmar (Burma) 77 -4.35% 189
Montenegro Montenegro 101 -0.731% 134
Mongolia Mongolia 158 +24.3% 5
Mozambique Mozambique 162 +5.2% 4
Mauritania Mauritania 117 +1.81% 54
Mauritius Mauritius 84.4 +0.957% 181
Malawi Malawi 146 +2.22% 9
Malaysia Malaysia 103 0% 114
Namibia Namibia 101 +4.65% 136
New Caledonia New Caledonia 94.8 -3.58% 162
Niger Niger 133 +23.5% 18
Nigeria Nigeria 120 +2.15% 46
Nicaragua Nicaragua 128 -0.164% 27
Netherlands Netherlands 101 -2.82% 128
Norway Norway 103 +0.489% 116
Nepal Nepal 123 +2.92% 37
Nauru Nauru 99.7 +0.141% 143
New Zealand New Zealand 101 -2.61% 133
Oman Oman 170 +22.4% 3
Pakistan Pakistan 122 +0.865% 39
Panama Panama 115 +3.52% 57
Peru Peru 128 +3.66% 26
Philippines Philippines 101 +0.259% 137
Papua New Guinea Papua New Guinea 101 +0.48% 135
Poland Poland 112 +0.921% 75
Puerto Rico Puerto Rico 95.3 +4.25% 161
North Korea North Korea 92.7 -0.909% 168
Portugal Portugal 110 -13.8% 82
Paraguay Paraguay 85.4 -22.4% 179
Palestinian Territories Palestinian Territories 112 -4.8% 73
French Polynesia French Polynesia 103 -0.896% 113
Qatar Qatar 146 -14.1% 10
Romania Romania 85.2 -20.2% 180
Russia Russia 126 +13.3% 31
Rwanda Rwanda 117 -0.458% 51
Saudi Arabia Saudi Arabia 173 +3.25% 2
Sudan Sudan 116 +5.16% 55
Senegal Senegal 177 -1.35% 1
Singapore Singapore 131 -2.03% 19
Solomon Islands Solomon Islands 100 -1.07% 138
Sierra Leone Sierra Leone 105 -19.8% 107
El Salvador El Salvador 103 +0.264% 118
Somalia Somalia 98.9 -0.882% 147
Serbia Serbia 98.4 -5.63% 151
South Sudan South Sudan 115 +0.499% 61
São Tomé & Príncipe São Tomé & Príncipe 107 +0.799% 91
Suriname Suriname 87.9 +0.0911% 175
Slovakia Slovakia 86.2 -11.5% 178
Slovenia Slovenia 94 -3.89% 165
Sweden Sweden 101 +4.87% 126
Eswatini Eswatini 106 +1.33% 99
Seychelles Seychelles 150 -0.932% 7
Syria Syria 97 -3.59% 158
Chad Chad 130 +6.04% 21
Togo Togo 128 +5.12% 25
Thailand Thailand 104 +4.1% 108
Tajikistan Tajikistan 150 +0.448% 6
Turkmenistan Turkmenistan 112 -0.232% 72
Timor-Leste Timor-Leste 102 +13.3% 123
Tonga Tonga 97.8 +0.267% 154
Trinidad & Tobago Trinidad & Tobago 93.1 +5.69% 166
Tunisia Tunisia 110 +5.86% 85
Turkey Turkey 129 +7.33% 24
Tuvalu Tuvalu 111 -2.34% 80
Tanzania Tanzania 110 -2.7% 84
Uganda Uganda 136 -10.7% 15
Ukraine Ukraine 87.8 -22.9% 176
Uruguay Uruguay 97.8 -2.64% 153
United States United States 101 -3.55% 129
Uzbekistan Uzbekistan 114 +4.31% 62
St. Vincent & Grenadines St. Vincent & Grenadines 101 +0.109% 127
Venezuela Venezuela 89.9 +1.4% 172
Vietnam Vietnam 114 +0.745% 64
Vanuatu Vanuatu 83 -1.33% 185
Samoa Samoa 83.1 -2.11% 184
Yemen Yemen 118 -2.05% 50
South Africa South Africa 113 -0.875% 68
Zambia Zambia 120 -5.95% 45
Zimbabwe Zimbabwe 122 +0.962% 42

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.PRD.FOOD.XD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.PRD.FOOD.XD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))