Domestic private health expenditure (% of current health expenditure)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 77.9 +0.772% 4
Angola Angola 43.7 +9.05% 69
Albania Albania 51.4 -14.1% 44
Andorra Andorra 26.5 +2.08% 133
United Arab Emirates United Arab Emirates 40.8 +13.6% 79
Argentina Argentina 40.4 +7.23% 80
Armenia Armenia 82.3 +1.13% 2
Antigua & Barbuda Antigua & Barbuda 42.4 +15.1% 77
Australia Australia 25.9 +7.93% 137
Austria Austria 22.5 +2.97% 146
Azerbaijan Azerbaijan 66.8 -1.84% 13
Burundi Burundi 27.9 -0.0595% 127
Belgium Belgium 24.8 +6.46% 143
Benin Benin 48.8 -12.3% 49
Burkina Faso Burkina Faso 38.9 -0.446% 83
Bangladesh Bangladesh 75 -0.611% 6
Bulgaria Bulgaria 37.5 +6.86% 91
Bahrain Bahrain 35.1 -2.98% 102
Bahamas Bahamas 43.2 -4.96% 73
Bosnia & Herzegovina Bosnia & Herzegovina 31.3 +0.87% 115
Belarus Belarus 32.3 +26.3% 113
Belize Belize 33.1 +20.5% 105
Bolivia Bolivia 25.3 -4.54% 139
Brazil Brazil 55 -0.282% 34
Barbados Barbados 54.3 +20.6% 38
Brunei Brunei 7.66 +10.5% 184
Bhutan Bhutan 36.1 +54.1% 99
Botswana Botswana 18.6 +2.97% 157
Central African Republic Central African Republic 48.4 -3.92% 51
Canada Canada 28.8 +6.46% 124
Switzerland Switzerland 65 +1.38% 18
Chile Chile 49.6 +6.98% 46
China China 45.1 -1.86% 66
Côte d’Ivoire Côte d’Ivoire 45.2 +1.92% 65
Cameroon Cameroon 70.6 -4.15% 9
Congo - Kinshasa Congo - Kinshasa 43 -5.97% 75
Congo - Brazzaville Congo - Brazzaville 48.1 +9.49% 53
Colombia Colombia 29.6 +7.85% 121
Comoros Comoros 46.8 -21.7% 58
Cape Verde Cape Verde 27.5 +20.1% 129
Costa Rica Costa Rica 31 +4.73% 117
Cuba Cuba 11.1 +32.7% 180
Cyprus Cyprus 18.7 +3.9% 156
Czechia Czechia 15.2 +12.9% 166
Germany Germany 19.7 -5.94% 153
Djibouti Djibouti 32.8 +13.7% 108
Dominica Dominica 28.2 +14.2% 126
Denmark Denmark 16 +1.9% 162
Dominican Republic Dominican Republic 36.2 +14.6% 97
Algeria Algeria 52.1 +24% 43
Ecuador Ecuador 38.6 +6.25% 84
Egypt Egypt 60.6 -1.8% 20
Eritrea Eritrea 54.3 +9.33% 37
Spain Spain 26 -1.2% 136
Estonia Estonia 25.2 +5.35% 140
Ethiopia Ethiopia 49.4 +20% 47
Finland Finland 18.3 -2.04% 158
Fiji Fiji 13.5 -67.4% 172
France France 24.6 +1.59% 144
Micronesia (Federated States of) Micronesia (Federated States of) 11.9 +21.9% 177
Gabon Gabon 32.3 -12.5% 112
United Kingdom United Kingdom 16.9 +7.95% 161
Georgia Georgia 57.4 +24.8% 27
Ghana Ghana 28.8 -6.71% 125
Guinea Guinea 60.9 +3.13% 19
Gambia Gambia 31.2 -5.46% 116
Guinea-Bissau Guinea-Bissau 68.2 +8.85% 11
Equatorial Guinea Equatorial Guinea 72.9 -8.38% 7
Greece Greece 45.7 +12.4% 62
Grenada Grenada 57.8 +3.3% 26
Guatemala Guatemala 65.3 +2.26% 16
Guyana Guyana 25.1 -18.3% 141
Honduras Honduras 55.7 -3.06% 32
Croatia Croatia 15.5 -2.25% 164
Haiti Haiti 58.4 +9.45% 24
Hungary Hungary 27.7 -0.42% 128
Indonesia Indonesia 47.3 +22.6% 56
India India 59.7 +1.93% 21
Ireland Ireland 22.6 +0.18% 145
Iran Iran 50.4 +13.2% 45
Iraq Iraq 47.8 -4.16% 54
Iceland Iceland 15.3 -5.54% 165
Israel Israel 32.7 +1.51% 110
Italy Italy 25.6 +0.0329% 138
Jamaica Jamaica 22.5 -17.9% 147
Jordan Jordan 56.6 +0.904% 29
Japan Japan 14 -5.57% 170
Kazakhstan Kazakhstan 38.2 +10.6% 88
Kenya Kenya 34.9 +6.73% 103
Kyrgyzstan Kyrgyzstan 38.5 -1.65% 85
Cambodia Cambodia 65.8 +11.4% 15
Kiribati Kiribati 3.33 +17.8% 188
St. Kitts & Nevis St. Kitts & Nevis 47.4 +11.4% 55
South Korea South Korea 37.2 -5.34% 92
Kuwait Kuwait 12.8 +41.1% 176
Laos Laos 32.7 -8.68% 109
Lebanon Lebanon 58.4 -3.72% 23
Liberia Liberia 70.6 -0.606% 10
Libya Libya 30.5 +15.7% 119
St. Lucia St. Lucia 44.1 +2.97% 68
Sri Lanka Sri Lanka 45.4 -6.43% 64
Lesotho Lesotho 13 -14% 175
Lithuania Lithuania 34 +6.03% 104
Luxembourg Luxembourg 11.8 -0.11% 178
Latvia Latvia 35.1 +14.9% 101
Morocco Morocco 56 +1.2% 31
Monaco Monaco 13.3 +30.2% 173
Moldova Moldova 32.6 +4.27% 111
Madagascar Madagascar 38.4 -0.391% 86
Maldives Maldives 19 +17.6% 154
Mexico Mexico 48.1 -3.38% 52
Marshall Islands Marshall Islands 2.31 +3.48% 189
North Macedonia North Macedonia 43.1 -5.26% 74
Mali Mali 52.4 -2.37% 41
Malta Malta 33 +1.1% 107
Myanmar (Burma) Myanmar (Burma) 75.8 +3.44% 5
Montenegro Montenegro 37 -4.63% 94
Mongolia Mongolia 40.3 +26.3% 81
Mozambique Mozambique 15 +3.68% 167
Mauritania Mauritania 43.3 -15.3% 72
Mauritius Mauritius 52.2 +8.99% 42
Malawi Malawi 21.8 -1.71% 149
Malaysia Malaysia 49.4 +12.8% 48
Namibia Namibia 45.5 +1.55% 63
Niger Niger 46.6 -5.4% 59
Nigeria Nigeria 78.7 -0.162% 3
Nicaragua Nicaragua 37.2 +15.3% 93
Netherlands Netherlands 31.5 +4.16% 114
Norway Norway 14.3 +1.58% 168
Nepal Nepal 58 +7.31% 25
Nauru Nauru 1.87 -23.7% 190
New Zealand New Zealand 18.8 -17.8% 155
Oman Oman 15.6 +21.9% 163
Pakistan Pakistan 48.7 -7.76% 50
Panama Panama 43.4 +0.0603% 70
Peru Peru 35.6 +8.24% 100
Philippines Philippines 54.6 +8.75% 36
Palau Palau 38.1 +0.579% 89
Papua New Guinea Papua New Guinea 9.25 -10.6% 183
Poland Poland 26.7 -4.12% 132
Portugal Portugal 37.5 +1.02% 90
Paraguay Paraguay 47.2 +6.97% 57
Palestinian Territories Palestinian Territories 45.8 +2.17% 60
Qatar Qatar 17.8 +18.9% 159
Romania Romania 22.3 +2.58% 148
Russia Russia 29.4 -3.54% 122
Rwanda Rwanda 21.4 -6.98% 151
Saudi Arabia Saudi Arabia 21.8 -5.46% 150
Sudan Sudan 56.6 -9.57% 30
Senegal Senegal 56.7 +4.2% 28
Singapore Singapore 43.4 +10.8% 71
Solomon Islands Solomon Islands 3.77 +2.29% 187
Sierra Leone Sierra Leone 53 +2.43% 40
El Salvador El Salvador 36.7 +2.66% 95
San Marino San Marino 11.4 -3.54% 179
Somalia Somalia 43 -1.06% 76
Serbia Serbia 38.4 +2.73% 87
South Sudan South Sudan 42.3 +9.77% 78
São Tomé & Príncipe São Tomé & Príncipe 13.8 +3% 171
Suriname Suriname 33 -14.1% 106
Slovakia Slovakia 20.1 -0.712% 152
Slovenia Slovenia 26.4 -0.584% 134
Sweden Sweden 14 +0.897% 169
Eswatini Eswatini 27.1 -3.43% 131
Seychelles Seychelles 26.1 +7.31% 135
Syria Syria 45.7 -5.32% 61
Chad Chad 59 -16% 22
Togo Togo 67.7 -8.41% 12
Thailand Thailand 27.2 -7.85% 130
Tajikistan Tajikistan 65.3 +0.129% 17
Turkmenistan Turkmenistan 84.5 +2.25% 1
Timor-Leste Timor-Leste 5.48 -7.01% 185
Tonga Tonga 5.45 -15.2% 186
Trinidad & Tobago Trinidad & Tobago 55.4 +3.76% 33
Tunisia Tunisia 39 +0.361% 82
Turkey Turkey 24.8 +17.2% 142
Tuvalu Tuvalu 0.429 +1.7% 191
Tanzania Tanzania 29.8 +12.5% 120
Uganda Uganda 36.2 +24.6% 98
Uruguay Uruguay 29.3 +10.4% 123
United States United States 44.8 +0.364% 67
Uzbekistan Uzbekistan 65.8 +8.24% 14
St. Vincent & Grenadines St. Vincent & Grenadines 30.5 +5.46% 118
Venezuela Venezuela 53.9 -18.3% 39
Vietnam Vietnam 54.8 -1.47% 35
Vanuatu Vanuatu 10.4 +5.02% 182
Samoa Samoa 13.2 +11.6% 174
Yemen Yemen 71.1 -2.64% 8
South Africa South Africa 36.5 +3.66% 96
Zambia Zambia 10.9 +35.8% 181
Zimbabwe Zimbabwe 17.6 -21% 160

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.PVTD.CH.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.PVTD.CH.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))