Domestic general government health expenditure (% of general government expenditure)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 1.13 -71.6% 191
Angola Angola 6.7 -23.7% 141
Albania Albania 9.19 +0.575% 106
Andorra Andorra 15.9 +0.509% 38
United Arab Emirates United Arab Emirates 12.1 -6.3% 72
Argentina Argentina 15.2 -6.26% 43
Armenia Armenia 6.5 -14.8% 144
Antigua & Barbuda Antigua & Barbuda 14 +6.83% 57
Australia Australia 20.2 +4.72% 12
Austria Austria 16.3 -3.43% 32
Azerbaijan Azerbaijan 4.61 0% 170
Burundi Burundi 4.73 -35.5% 169
Belgium Belgium 15.2 -1.63% 45
Benin Benin 2.6 +62.1% 182
Burkina Faso Burkina Faso 8.4 -14.7% 121
Bangladesh Bangladesh 1.19 -61.4% 190
Bulgaria Bulgaria 11.6 -13% 79
Bahrain Bahrain 8.64 -4.04% 118
Bahamas Bahamas 15.8 +17.1% 39
Bosnia & Herzegovina Bosnia & Herzegovina 14.8 -9.69% 51
Belarus Belarus 12.3 -6.63% 71
Belize Belize 11.5 -15.9% 80
Bolivia Bolivia 16.4 -4.36% 31
Brazil Brazil 9 -10.3% 109
Barbados Barbados 8.74 -29.7% 114
Brunei Brunei 6.36 -6.71% 146
Bhutan Bhutan 6.69 +19.2% 142
Botswana Botswana 14.6 0% 52
Central African Republic Central African Republic 9.03 +40.6% 107
Canada Canada 19.5 -2.23% 14
Switzerland Switzerland 12.4 +3.54% 68
Chile Chile 19 +22.1% 18
China China 8.8 -1.18% 113
Côte d’Ivoire Côte d’Ivoire 6.21 -20.1% 149
Cameroon Cameroon 3.94 +37.6% 177
Congo - Kinshasa Congo - Kinshasa 3.98 -10.9% 176
Congo - Brazzaville Congo - Brazzaville 3.53 -57.1% 179
Colombia Colombia 15.7 -17.6% 40
Comoros Comoros 4.74 0% 168
Cape Verde Cape Verde 16.1 -6.04% 36
Costa Rica Costa Rica 25.8 +0.168% 2
Cuba Cuba 21 -2.07% 8
Cyprus Cyprus 18.3 -0.146% 19
Czechia Czechia 16.7 -4.86% 28
Germany Germany 20.5 +2.16% 11
Djibouti Djibouti 5.15 +55.7% 162
Dominica Dominica 6.2 +7.77% 150
Denmark Denmark 17.7 -2.71% 24
Dominican Republic Dominican Republic 14.4 -18.6% 54
Algeria Algeria 5.36 -39.3% 158
Ecuador Ecuador 11.9 -14.4% 75
Egypt Egypt 7.22 +6.16% 133
Eritrea Eritrea 2.37 0% 187
Spain Spain 15.2 +0.0858% 44
Estonia Estonia 13.2 -3.66% 62
Ethiopia Ethiopia 5.68 -20% 156
Finland Finland 14.8 +3.38% 49
Fiji Fiji 10.3 +0.187% 93
France France 15.3 -3.41% 42
Micronesia (Federated States of) Micronesia (Federated States of) 1.89 +9.15% 189
Gabon Gabon 9.59 0% 99
United Kingdom United Kingdom 20.7 -6.43% 10
Georgia Georgia 10.5 -25.9% 90
Ghana Ghana 7.41 -3.96% 130
Guinea Guinea 5.02 +11.7% 165
Gambia Gambia 6.83 -8.67% 138
Guinea-Bissau Guinea-Bissau 5.16 +13.3% 161
Equatorial Guinea Equatorial Guinea 4.45 -17% 172
Greece Greece 8.65 -8.22% 115
Grenada Grenada 6.28 -9.52% 148
Guatemala Guatemala 16.9 -2.97% 26
Guyana Guyana 10.5 -18.7% 91
Honduras Honduras 14.2 +17.1% 55
Croatia Croatia 13.7 -2.8% 59
Haiti Haiti 4.11 -1.4% 175
Hungary Hungary 9.91 -10.1% 96
Indonesia Indonesia 8.03 -33.9% 124
India India 4.46 +0.0307% 171
Ireland Ireland 22.3 +6.73% 5
Iran Iran 19 -15.3% 15
Iraq Iraq 5.84 -16.4% 153
Iceland Iceland 16.5 +0.454% 30
Israel Israel 13 +2.66% 66
Italy Italy 11.8 -4.19% 76
Jamaica Jamaica 19 +17.2% 17
Jordan Jordan 7.64 -3.78% 128
Japan Japan 23.4 +4.38% 4
Kazakhstan Kazakhstan 10.6 -8.78% 89
Kenya Kenya 8.65 -6.8% 117
Kyrgyzstan Kyrgyzstan 7.55 -18.1% 129
Cambodia Cambodia 6.99 0% 136
Kiribati Kiribati 9.71 -8.1% 98
St. Kitts & Nevis St. Kitts & Nevis 5.91 -31.5% 152
South Korea South Korea 14.1 -2.2% 56
Kuwait Kuwait 9.4 -5.45% 103
Laos Laos 4.25 -7.12% 174
Lebanon Lebanon 15.5 +1.04% 41
Liberia Liberia 4.79 +28.4% 167
Libya Libya 5.06 -26.7% 164
St. Lucia St. Lucia 9 +7.17% 108
Sri Lanka Sri Lanka 9.49 0% 101
Lesotho Lesotho 13.1 +60.9% 64
Lithuania Lithuania 13 -6.68% 65
Luxembourg Luxembourg 11 -4.17% 85
Latvia Latvia 12.1 -14.7% 73
Morocco Morocco 6.82 -5.56% 139
Monaco Monaco 12 -11.8% 74
Moldova Moldova 12.3 -15.6% 70
Madagascar Madagascar 5.74 +6.75% 154
Maldives Maldives 18.2 0% 20
Mexico Mexico 10.4 -5.84% 92
Marshall Islands Marshall Islands 6.65 -10.7% 143
North Macedonia North Macedonia 12.4 -4.94% 69
Mali Mali 5.69 +12.9% 155
Malta Malta 16.2 -0.788% 34
Myanmar (Burma) Myanmar (Burma) 2.55 -38.7% 184
Montenegro Montenegro 16.3 +12.9% 33
Mongolia Mongolia 9.25 -21.2% 105
Mozambique Mozambique 8.04 -1.33% 123
Mauritania Mauritania 6.28 -12.8% 147
Mauritius Mauritius 9.39 -13.8% 104
Malawi Malawi 3.29 -42.9% 181
Malaysia Malaysia 8.01 -20.4% 126
Namibia Namibia 11.7 +4.46% 78
Niger Niger 7.11 -18.7% 135
Nigeria Nigeria 4.31 0% 173
Nicaragua Nicaragua 17.8 -10.7% 22
Netherlands Netherlands 15.9 -5.78% 37
Norway Norway 17.8 -0.842% 23
Nepal Nepal 8.01 +23.5% 125
Nauru Nauru 11.8 +17.1% 77
New Zealand New Zealand 19.8 +5.4% 13
Oman Oman 8.31 -21.2% 122
Pakistan Pakistan 5.55 -7.82% 157
Panama Panama 22.2 +3.65% 6
Peru Peru 16.7 -12.1% 29
Philippines Philippines 8.98 -8.59% 110
Palau Palau 9.51 0% 100
Papua New Guinea Papua New Guinea 6.99 +31.2% 137
Poland Poland 10.7 +1.75% 87
Portugal Portugal 14.8 +0.697% 50
Paraguay Paraguay 17.4 -5.05% 25
Palestinian Territories Palestinian Territories 13.5 -2.62% 61
Qatar Qatar 7.39 -11.8% 131
Romania Romania 11.2 -8.74% 84
Russia Russia 13.8 -1.68% 58
Rwanda Rwanda 9.47 0% 102
Saudi Arabia Saudi Arabia 12.8 -11.1% 67
Sudan Sudan 6.72 -14.5% 140
Senegal Senegal 3.37 -27.6% 180
Singapore Singapore 18.1 -5.22% 21
Solomon Islands Solomon Islands 9.72 -7.81% 97
Sierra Leone Sierra Leone 5.2 -24% 160
El Salvador El Salvador 21.2 +4.74% 7
San Marino San Marino 29.5 +65.3% 1
Somalia Somalia 2.5 -56.3% 186
Serbia Serbia 13.7 +1.83% 60
South Sudan South Sudan 2.11 0% 188
São Tomé & Príncipe São Tomé & Príncipe 14.9 +13.7% 48
Suriname Suriname 13.1 +30.4% 63
Slovakia Slovakia 14.6 +6.78% 53
Slovenia Slovenia 15 +6.6% 47
Sweden Sweden 19 -2.23% 16
Eswatini Eswatini 11.3 -7.73% 81
Seychelles Seychelles 10.2 0% 94
Syria Syria 7.78 +2.44% 127
Chad Chad 7.26 +29.5% 132
Togo Togo 2.56 0% 183
Thailand Thailand 16.1 +17.5% 35
Tajikistan Tajikistan 6.39 -8.96% 145
Turkmenistan Turkmenistan 8.46 -2.57% 120
Timor-Leste Timor-Leste 8.93 +28% 111
Tonga Tonga 8.65 +17.8% 116
Trinidad & Tobago Trinidad & Tobago 10.9 -1.37% 86
Tunisia Tunisia 11.2 -9.57% 83
Turkey Turkey 10 -13.8% 95
Tuvalu Tuvalu 11.2 +36.8% 82
Tanzania Tanzania 5.14 0% 163
Uganda Uganda 4.86 -9.06% 166
Uruguay Uruguay 20.9 -3.46% 9
United States United States 24.7 +15.8% 3
Uzbekistan Uzbekistan 7.13 -28% 134
St. Vincent & Grenadines St. Vincent & Grenadines 8.63 -10.1% 119
Venezuela Venezuela 6.01 +24.7% 151
Vietnam Vietnam 10.7 +9.88% 88
Vanuatu Vanuatu 3.89 +40% 178
Samoa Samoa 15.2 +2.54% 46
Yemen Yemen 2.51 -31.3% 185
South Africa South Africa 16.9 0% 27
Zambia Zambia 8.89 -3.96% 112
Zimbabwe Zimbabwe 5.21 0% 159

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.GHED.GE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.GHED.GE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))