Domestic general government health expenditure per capita (current US$)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.634 -76.5% 190
Angola Angola 52.2 +41% 137
Albania Albania 187 +1.34% 100
Andorra Andorra 2,345 -10.4% 24
United Arab Emirates United Arab Emirates 1,371 -4.95% 37
Argentina Argentina 800 +21.1% 51
Armenia Armenia 116 +9.79% 118
Antigua & Barbuda Antigua & Barbuda 623 +17.2% 60
Australia Australia 4,990 -6.77% 8
Austria Austria 4,533 -11% 11
Azerbaijan Azerbaijan 92.3 +16.3% 123
Burundi Burundi 4.67 -18.8% 184
Belgium Belgium 4,063 -7.76% 14
Benin Benin 6.52 +55.5% 177
Burkina Faso Burkina Faso 22.8 -6.84% 153
Bangladesh Bangladesh 3.96 -60% 187
Bulgaria Bulgaria 632 -6.23% 59
Bahrain Bahrain 721 -3.9% 55
Bahamas Bahamas 1,320 +19.7% 38
Bosnia & Herzegovina Bosnia & Herzegovina 439 -7.79% 68
Belarus Belarus 357 -0.534% 74
Belize Belize 185 -14.2% 101
Bolivia Bolivia 214 +7.7% 95
Brazil Brazil 381 +11% 71
Barbados Barbados 586 -22.4% 64
Brunei Brunei 615 -0.733% 61
Bhutan Bhutan 75.6 +9.04% 129
Botswana Botswana 359 -4.82% 73
Central African Republic Central African Republic 7.67 +20% 174
Canada Canada 4,454 -5.83% 12
Switzerland Switzerland 3,832 -5.06% 18
Chile Chile 780 -7.78% 53
China China 369 +1.82% 72
Côte d’Ivoire Côte d’Ivoire 31.7 -18.9% 147
Cameroon Cameroon 10.8 +32.1% 166
Congo - Kinshasa Congo - Kinshasa 4.48 +23.8% 185
Congo - Brazzaville Congo - Brazzaville 18.6 -52.4% 154
Colombia Colombia 356 -12.6% 76
Comoros Comoros 12.7 -13.6% 162
Cape Verde Cape Verde 184 -12.2% 104
Costa Rica Costa Rica 675 -1.8% 58
Cyprus Cyprus 2,295 -9.25% 26
Czechia Czechia 2,061 -6.14% 29
Germany Germany 4,966 -5.4% 10
Djibouti Djibouti 33.8 +46.1% 146
Dominica Dominica 410 +22.9% 69
Denmark Denmark 5,420 -13.8% 6
Dominican Republic Dominican Republic 270 -3.02% 88
Algeria Algeria 85.2 -28.8% 125
Ecuador Ecuador 301 -4.54% 81
Egypt Egypt 64.8 -2.8% 133
Eritrea Eritrea 6.29 +7.47% 179
Spain Spain 2,155 -7.02% 28
Estonia Estonia 1,495 -6.02% 34
Ethiopia Ethiopia 6.84 -14.1% 176
Finland Finland 4,006 -6.4% 15
Fiji Fiji 173 +0.583% 106
France France 3,670 -9.97% 19
Micronesia (Federated States of) Micronesia (Federated States of) 43 +6.18% 142
Gabon Gabon 159 +17.1% 107
United Kingdom United Kingdom 4,183 -11.6% 13
Georgia Georgia 201 -8.75% 97
Ghana Ghana 45.6 -11.1% 141
Guinea Guinea 10.1 +25.4% 167
Gambia Gambia 12.9 +0.904% 160
Guinea-Bissau Guinea-Bissau 8.95 -5.96% 171
Equatorial Guinea Equatorial Guinea 49.9 +5.49% 138
Greece Greece 956 -12.5% 45
Grenada Grenada 211 +0.892% 96
Guatemala Guatemala 129 +12.1% 113
Guyana Guyana 381 +20.9% 70
Honduras Honduras 102 +7.47% 120
Croatia Croatia 1,135 -2.47% 43
Haiti Haiti 5.58 -14.2% 181
Hungary Hungary 886 -11.2% 47
Indonesia Indonesia 66 -30.1% 132
India India 31.1 +1.89% 148
Ireland Ireland 4,988 -4.73% 9
Iran Iran 117 -9.43% 117
Iraq Iraq 130 +4.38% 112
Iceland Iceland 5,802 +3.02% 5
Israel Israel 2,807 -0.462% 22
Italy Italy 2,333 -7.81% 25
Jamaica Jamaica 357 +35.1% 75
Jordan Jordan 108 +0.49% 119
Japan Japan 3,345 -12.4% 21
Kazakhstan Kazakhstan 259 +1.2% 90
Kenya Kenya 42.3 -8.02% 143
Kyrgyzstan Kyrgyzstan 46.1 +14.9% 140
Cambodia Cambodia 27.3 -14.3% 151
Kiribati Kiribati 176 -10.7% 105
St. Kitts & Nevis St. Kitts & Nevis 611 -6.37% 62
South Korea South Korea 1,914 +0.438% 32
Kuwait Kuwait 1,483 -8.83% 35
Laos Laos 12.8 -28.6% 161
Lebanon Lebanon 134 +49.4% 111
Liberia Liberia 9.54 +28.7% 169
Libya Libya 188 -14.6% 98
St. Lucia St. Lucia 274 +9.85% 87
Sri Lanka Sri Lanka 58.6 -20.8% 134
Lesotho Lesotho 67.7 +42.2% 130
Lithuania Lithuania 1,195 -4.38% 42
Luxembourg Luxembourg 6,115 -7.95% 4
Latvia Latvia 1,063 -19.2% 44
Morocco Morocco 81.5 -5.99% 128
Monaco Monaco 6,634 -10.1% 3
Moldova Moldova 258 -3.55% 91
Madagascar Madagascar 4.7 +30.2% 183
Maldives Maldives 899 +19.7% 46
Mexico Mexico 338 +11.2% 78
Marshall Islands Marshall Islands 285 -12.4% 85
North Macedonia North Macedonia 319 -7.9% 79
Mali Mali 11.6 -0.921% 164
Malta Malta 2,247 -8.42% 27
Myanmar (Burma) Myanmar (Burma) 6.41 -45.8% 178
Montenegro Montenegro 697 +11.3% 57
Mongolia Mongolia 158 -18.1% 108
Mozambique Mozambique 15.3 +19.2% 156
Mauritania Mauritania 35.5 +21.7% 145
Mauritius Mauritius 279 -7.53% 86
Malawi Malawi 5.35 -36.9% 182
Malaysia Malaysia 232 -13.5% 93
Namibia Namibia 185 -5.09% 102
Niger Niger 9.35 -27.6% 170
Nigeria Nigeria 13.2 +21.3% 159
Nicaragua Nicaragua 120 -7.22% 116
Netherlands Netherlands 3,972 -13.2% 16
Norway Norway 7,448 -5.38% 1
Nepal Nepal 27.9 +26.4% 149
Nauru Nauru 1,968 +38.7% 31
New Zealand New Zealand 3,903 +1.81% 17
Oman Oman 597 -20.1% 63
Pakistan Pakistan 14.8 -7.04% 157
Panama Panama 827 +5.08% 49
Peru Peru 286 -6.1% 84
Philippines Philippines 82.4 -11.4% 126
Palau Palau 803 -1.18% 50
Papua New Guinea Papua New Guinea 47.5 +55.6% 139
Poland Poland 874 +2.41% 48
Portugal Portugal 1,610 -7.04% 33
Paraguay Paraguay 253 -5.04% 92
Palestinian Territories Palestinian Territories 141 -5.07% 110
Qatar Qatar 1,464 -6.76% 36
Romania Romania 701 -3.81% 56
Russia Russia 762 +24.2% 54
Rwanda Rwanda 27.4 +10.6% 150
Saudi Arabia Saudi Arabia 1,247 -2.14% 41
Sudan Sudan 8.13 +46.6% 173
Senegal Senegal 14.1 -26.9% 158
Singapore Singapore 2,446 -0.591% 23
Solomon Islands Solomon Islands 66.6 -3.34% 131
Sierra Leone Sierra Leone 7.48 -26.3% 175
El Salvador El Salvador 312 +4.61% 80
San Marino San Marino 3,432 -3.46% 20
Somalia Somalia 1.01 -33.6% 189
Serbia Serbia 557 -3.12% 66
South Sudan South Sudan 4.24 -17.3% 186
São Tomé & Príncipe São Tomé & Príncipe 99.7 +24.3% 121
Suriname Suriname 225 +29.6% 94
Slovakia Slovakia 1,312 -2.32% 39
Slovenia Slovenia 2,011 -1.22% 30
Sweden Sweden 5,109 -13.3% 7
Eswatini Eswatini 128 -13.1% 114
Seychelles Seychelles 513 +7.84% 67
Syria Syria 11.6 +23% 163
Chad Chad 8.94 +28.3% 172
Togo Togo 5.95 +13.6% 180
Thailand Thailand 269 +5.09% 89
Tajikistan Tajikistan 18.4 +5.79% 155
Turkmenistan Turkmenistan 86.1 +6.3% 124
Timor-Leste Timor-Leste 126 +50.2% 115
Tonga Tonga 185 +14% 103
Trinidad & Tobago Trinidad & Tobago 576 +5.38% 65
Tunisia Tunisia 151 -5.87% 109
Turkey Turkey 290 -14.7% 83
Tuvalu Tuvalu 786 +31.5% 52
Tanzania Tanzania 11.3 +10.1% 165
Uganda Uganda 9.83 -8.12% 168
Uruguay Uruguay 1,308 +11.7% 40
United States United States 6,861 +3.32% 2
Uzbekistan Uzbekistan 57.6 -6.05% 135
St. Vincent & Grenadines St. Vincent & Grenadines 300 -2.51% 82
Venezuela Venezuela 94.7 +73.7% 122
Vietnam Vietnam 82.4 +13.5% 127
Vanuatu Vanuatu 54.6 +42.7% 136
Samoa Samoa 188 -7.57% 99
Yemen Yemen 1.88 +20.9% 188
South Africa South Africa 351 -6.62% 77
Zambia Zambia 36.3 +14% 144
Zimbabwe Zimbabwe 23 +10.3% 152

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.GHED.PC.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.GHED.PC.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))