Automated teller machines (ATMs) (per 100,000 adults)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 109 -2.46% 17
Angola Angola 17.5 +7.36% 111
Albania Albania 40.1 +9.26% 79
Andorra Andorra 92.7 -3.72% 23
United Arab Emirates United Arab Emirates 57.7 +4.3% 50
Argentina Argentina 74.5 +0.49% 32
Armenia Armenia 74.6 -0.441% 31
Antigua & Barbuda Antigua & Barbuda 55.7 -9.43% 53
Australia Australia 111 -5.22% 14
Austria Austria 172 -4.64% 4
Azerbaijan Azerbaijan 39.9 +0.99% 81
Benin Benin 4.12 +3.79% 136
Burkina Faso Burkina Faso 4.38 -0.936% 134
Bangladesh Bangladesh 13.6 +7.96% 116
Bulgaria Bulgaria 92.7 +3.56% 22
Bahamas Bahamas 117 +0.455% 13
Bosnia & Herzegovina Bosnia & Herzegovina 62.7 +4.45% 44
Belarus Belarus 54.4 -1.57% 55
Belize Belize 45.5 +0.968% 70
Bolivia Bolivia 40.1 -10.1% 78
Brazil Brazil 111 +13.3% 15
Botswana Botswana 35.6 +0.396% 88
Canada Canada 189 -8.49% 3
Switzerland Switzerland 85.4 -4.56% 26
Chile Chile 47.6 +1.15% 62
China China 72 -6.06% 35
Colombia Colombia 39 -0.755% 82
Comoros Comoros 7.54 +15% 128
Cape Verde Cape Verde 49 +1.27% 60
Costa Rica Costa Rica 63 -0.838% 43
Cyprus Cyprus 31.6 -2.53% 93
Czechia Czechia 55.6 -4.15% 54
Djibouti Djibouti 18.6 +20% 110
Dominica Dominica 25.5 -21.6% 102
Denmark Denmark 34.4 -12.2% 90
Dominican Republic Dominican Republic 40.1 +4.06% 80
Algeria Algeria 12 +47.1% 120
Ecuador Ecuador 36.5 -0.0284% 85
Egypt Egypt 30.6 +3.92% 96
Spain Spain 87.1 -3.24% 25
Estonia Estonia 58.4 -1.58% 48
Ethiopia Ethiopia 10.2 +10.4% 124
Finland Finland 35.3 -1.92% 89
Micronesia (Federated States of) Micronesia (Federated States of) 12.4 -1.47% 118
United Kingdom United Kingdom 84.3 -6.21% 27
Georgia Georgia 96.2 -3.1% 20
Ghana Ghana 10.6 -1.07% 122
Guinea Guinea 2.67 -0.656% 142
Gambia Gambia 8.35 -2.49% 126
Guinea-Bissau Guinea-Bissau 7.09 -4.94% 130
Greece Greece 67.6 +1.53% 38
Grenada Grenada 36.4 -6.15% 86
Guatemala Guatemala 36.3 -0.547% 87
Hong Kong SAR China Hong Kong SAR China 46.7 -5.75% 65
Honduras Honduras 25.4 +1.29% 103
Croatia Croatia 129 +2.18% 8
Hungary Hungary 59.2 +3.09% 47
Indonesia Indonesia 46 -3.76% 69
India India 25 +1.28% 105
Ireland Ireland 30.8 -8.82% 94
Iraq Iraq 14.1 +75.7% 113
Iceland Iceland 54.1 -18.6% 57
Israel Israel 138 +7.4% 6
Italy Italy 88.8 -1.84% 24
Jamaica Jamaica 38 +4.63% 83
Japan Japan 110 -2.8% 16
Kenya Kenya 6.6 -3.67% 132
Kyrgyzstan Kyrgyzstan 48.4 +8.53% 61
Cambodia Cambodia 46.5 +22.3% 66
St. Kitts & Nevis St. Kitts & Nevis 117 -0.544% 12
Kuwait Kuwait 67.5 -1.52% 39
Laos Laos 28.7 +4.39% 99
Lebanon Lebanon 31.9 -16% 92
Liberia Liberia 3.88 +0.204% 138
St. Lucia St. Lucia 45.2 +2.49% 71
Lesotho Lesotho 13.9 +2.06% 114
Lithuania Lithuania 46.8 -1.02% 64
Luxembourg Luxembourg 75.9 -14.4% 30
Latvia Latvia 56.2 -0.718% 51
Macao SAR China Macao SAR China 260 -1.26% 2
Moldova Moldova 61.7 +8.49% 46
Madagascar Madagascar 3.49 +12.1% 141
Maldives Maldives 46.1 +3.83% 68
Mexico Mexico 68.7 +3.55% 37
Marshall Islands Marshall Islands 10.5 -1.75% 123
North Macedonia North Macedonia 67.1 +1.98% 41
Mali Mali 4.36 -2.13% 135
Malta Malta 41.4 -2.47% 75
Montenegro Montenegro 83.4 +2.14% 28
Mongolia Mongolia 30.8 -25.3% 95
Mozambique Mozambique 7.66 -9.29% 127
Mauritania Mauritania 10.7 -6.11% 121
Mauritius Mauritius 41.8 -0.907% 73
Malaysia Malaysia 51.8 +0.289% 58
Namibia Namibia 67.4 -10.8% 40
Niger Niger 1.94 +1.83% 143
Nigeria Nigeria 13.6 -3.92% 115
Nicaragua Nicaragua 22.7 +7.31% 107
Netherlands Netherlands 33.5 -1.93% 91
Norway Norway 25.3 -6.5% 104
Nepal Nepal 22 +3.81% 108
Nauru Nauru 128 +10.1% 10
New Zealand New Zealand 43.7 -14.2% 72
Pakistan Pakistan 12 +2.38% 119
Panama Panama 72.6 +0.139% 33
Peru Peru 128 +5.48% 9
Philippines Philippines 28.4 -2.27% 100
Poland Poland 70.8 +3.77% 36
Portugal Portugal 161 +0.711% 5
Paraguay Paraguay 28.8 +1.83% 98
Palestinian Territories Palestinian Territories 23.2 -1.14% 106
Qatar Qatar 62.4 +2.67% 45
Romania Romania 63.8 +0.734% 42
Russia Russia 121 -16.9% 11
Rwanda Rwanda 3.95 -3.45% 137
Saudi Arabia Saudi Arabia 58 -3.71% 49
Senegal Senegal 7.09 -1.57% 129
Singapore Singapore 47.5 -6.78% 63
Solomon Islands Solomon Islands 12.8 -5.78% 117
Sierra Leone Sierra Leone 1.33 +7.67% 144
El Salvador El Salvador 46.1 +21.6% 67
San Marino San Marino 136 -0.454% 7
Serbia Serbia 54.4 +1.07% 56
South Sudan South Sudan 0.933 +9.9% 145
São Tomé & Príncipe São Tomé & Príncipe 29.7 -2.8% 97
Suriname Suriname 19.5 -30.5% 109
Slovakia Slovakia 72.4 +19.5% 34
Eswatini Eswatini 41.4 +5.47% 76
Togo Togo 6.97 -1.48% 131
Thailand Thailand 97.9 -2% 19
Timor-Leste Timor-Leste 16.4 +4.22% 112
Trinidad & Tobago Trinidad & Tobago 40.4 +0.595% 77
Turkey Turkey 80.5 +0.947% 29
Tanzania Tanzania 5.57 -0.868% 133
Uganda Uganda 3.64 -0.637% 140
Ukraine Ukraine 93.1 +5.77% 21
Uruguay Uruguay 315 +4.42% 1
Uzbekistan Uzbekistan 105 +28% 18
St. Vincent & Grenadines St. Vincent & Grenadines 36.9 -3.27% 84
Vietnam Vietnam 27.3 -1.29% 101
Samoa Samoa 56 +2.24% 52
Kosovo Kosovo 41.8 +8.92% 74
South Africa South Africa 50.5 +0.142% 59
Zambia Zambia 8.5 +4.86% 125
Zimbabwe Zimbabwe 3.71 -3.95% 139

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'FB.ATM.TOTL.P5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'FB.ATM.TOTL.P5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))