Antiretroviral therapy coverage (% of people living with HIV)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 9 -10% 66
Angola Angola 46 +12.2% 49
Albania Albania 57 +7.55% 39
United Arab Emirates United Arab Emirates 47 +2.17% 48
Armenia Armenia 53 +10.4% 43
Azerbaijan Azerbaijan 61 0% 35
Burundi Burundi 85 +2.41% 11
Benin Benin 81 +9.46% 15
Burkina Faso Burkina Faso 81 +8% 15
Bangladesh Bangladesh 38 +26.7% 56
Bulgaria Bulgaria 60 +7.14% 36
Bahamas Bahamas 76 0% 20
Belarus Belarus 79 +5.33% 17
Belize Belize 44 -4.35% 51
Bolivia Bolivia 52 0% 44
Brazil Brazil 74 +1.37% 22
Barbados Barbados 65 -1.52% 31
Bhutan Bhutan 57 +7.55% 39
Botswana Botswana 93 +1.09% 3
Central African Republic Central African Republic 49 +6.52% 47
Chile Chile 74 0% 22
Côte d’Ivoire Côte d’Ivoire 72 +2.86% 24
Cameroon Cameroon 88 +10% 8
Congo - Kinshasa Congo - Kinshasa 82 +10.8% 14
Congo - Brazzaville Congo - Brazzaville 24 +9.09% 63
Comoros Comoros 85 +10.4% 11
Cape Verde Cape Verde 87 +8.75% 9
Cuba Cuba 67 +4.69% 29
Denmark Denmark 89 +5.95% 7
Dominican Republic Dominican Republic 63 +12.5% 33
Algeria Algeria 63 -4.55% 33
Ecuador Ecuador 80 +8.11% 16
Egypt Egypt 47 +11.9% 48
Eritrea Eritrea 72 +4.35% 24
Ethiopia Ethiopia 83 +6.41% 13
Fiji Fiji 28 -22.2% 61
Gabon Gabon 59 +13.5% 37
Georgia Georgia 72 +1.41% 24
Ghana Ghana 63 +12.5% 33
Guinea Guinea 64 +14.3% 32
Gambia Gambia 37 +12.1% 57
Guinea-Bissau Guinea-Bissau 64 +12.3% 32
Equatorial Guinea Equatorial Guinea 42 +7.69% 52
Greece Greece 70 0% 26
Guatemala Guatemala 77 +4.05% 19
Guyana Guyana 67 +3.08% 29
Honduras Honduras 67 +6.35% 29
Croatia Croatia 79 +2.6% 17
Haiti Haiti 77 +2.67% 19
Indonesia Indonesia 33 +17.9% 58
India India 68 28
Iran Iran 37 +5.71% 57
Iraq Iraq 30 +15.4% 60
Iceland Iceland 85 +1.19% 11
Jamaica Jamaica 50 +6.38% 46
Jordan Jordan 50 +13.6% 46
Kenya Kenya 94 +1.08% 2
Kyrgyzstan Kyrgyzstan 54 +8% 42
Cambodia Cambodia 86 +4.88% 10
Kuwait Kuwait 93 +8.14% 3
Laos Laos 58 +9.43% 38
Lebanon Lebanon 80 +11.1% 16
Liberia Liberia 72 +18% 24
Libya Libya 64 +3.23% 32
Sri Lanka Sri Lanka 68 +15.3% 28
Lesotho Lesotho 86 +2.38% 10
Lithuania Lithuania 41 +10.8% 53
Luxembourg Luxembourg 89 +9.88% 7
Latvia Latvia 42 0% 52
Morocco Morocco 74 +2.78% 22
Moldova Moldova 49 +6.52% 47
Madagascar Madagascar 18 +28.6% 64
Maldives Maldives 67 -4.29% 29
Mexico Mexico 62 +3.33% 34
Mali Mali 50 +11.1% 46
Malta Malta 65 +4.84% 31
Myanmar (Burma) Myanmar (Burma) 74 +7.25% 22
Montenegro Montenegro 57 +11.8% 39
Mongolia Mongolia 40 +5.26% 54
Mozambique Mozambique 81 +14.1% 15
Mauritania Mauritania 45 +2.27% 50
Malawi Malawi 93 +4.49% 3
Malaysia Malaysia 55 0% 41
Namibia Namibia 91 +3.41% 5
Niger Niger 75 +4.17% 21
Nicaragua Nicaragua 56 +12% 40
Nepal Nepal 78 +8.33% 18
New Zealand New Zealand 85 +2.41% 11
Oman Oman 71 +7.58% 25
Pakistan Pakistan 13 +18.2% 65
Panama Panama 66 +26.9% 30
Peru Peru 82 +5.13% 14
Philippines Philippines 41 +7.89% 53
Papua New Guinea Papua New Guinea 61 +7.02% 35
Paraguay Paraguay 56 +5.66% 40
Qatar Qatar 41 +2.5% 53
Romania Romania 68 -2.86% 28
Rwanda Rwanda 92 +3.37% 4
Saudi Arabia Saudi Arabia 90 0% 6
Sudan Sudan 28 0% 61
Senegal Senegal 80 +5.26% 16
Sierra Leone Sierra Leone 76 +24.6% 20
El Salvador El Salvador 66 +1.54% 30
Serbia Serbia 63 +1.61% 33
South Sudan South Sudan 32 +10.3% 59
São Tomé & Príncipe São Tomé & Príncipe 89 +11.3% 7
Suriname Suriname 44 -6.38% 51
Slovenia Slovenia 84 +1.2% 12
Eswatini Eswatini 95 +6.74% 1
Syria Syria 51 0% 45
Chad Chad 77 +6.94% 19
Togo Togo 82 +7.89% 14
Thailand Thailand 81 +2.53% 15
Tajikistan Tajikistan 63 +1.61% 33
Timor-Leste Timor-Leste 69 +25.5% 27
Trinidad & Tobago Trinidad & Tobago 60 -1.64% 36
Tunisia Tunisia 26 +18.2% 62
Tanzania Tanzania 94 +6.82% 2
Uganda Uganda 84 +1.2% 12
Uruguay Uruguay 74 +5.71% 22
Venezuela Venezuela 67 +1.52% 29
Vietnam Vietnam 73 +2.82% 23
Yemen Yemen 39 +11.4% 55
South Africa South Africa 75 +1.35% 21
Zambia Zambia 90 +5.88% 6
Zimbabwe Zimbabwe 94 +4.44% 2

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.HIV.ARTC.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.HIV.ARTC.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))