Publications by Zhongming Jiang

Statistical Modeling XIII - The Formulation of Model-Ready Panel Data Frame (PDF) by Time-Series Imputation and Cross-Sectional Feature Engineering

19.10.2023

knitr::opts_chunk$set(echo = TRUE) 1 Package Invoking library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(tidyr) library(zoo) ## ## Attaching package: 'zoo' #...

3371 sym R (87159 sym/94 pcs) 1 img

Statistical Modeling XII - Advanced Data Manipulation and Feature Engineering Towards A Comprehensive Version of X

18.10.2023

knitr::opts_chunk$set(echo = TRUE) 1 Package Invoking library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(tidyr) library(zoo) ## ## Attaching package: 'zoo' #...

4474 sym R (101625 sym/99 pcs)

Statistical Modeling XI a - Recency Mapping, Logarithmic Transformation and Adjusted Min-Max Normalization on Outcome Data, Reversal Function and Proof of Injectivity, Customer-Level, Project-Level, and Customer/Project Grouped-Level Covariate Data

17.10.2023

knitr::opts_chunk$set(echo = TRUE) 1 Package Invoking library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(tidyr) library(zoo) ## ## Attaching package: 'zoo' #...

7379 sym R (226585 sym/106 pcs) 7 img

Statistical Modeling X - Bayesian Hierarchical Dynamic Multi-Outcome Model With Counterfactual Trend Analysis & ATT Estimation With Staggered Adoption

09.10.2023

knitr::opts_chunk$set(echo = TRUE) 1 Package Invoking library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.2 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.2 ✔ tibble 3...

792 sym R (37770 sym/50 pcs) 15 img

Statistical Modeling IX - Time-Series Cross-Sectional Data with Staggered Adoption

08.10.2023

knitr::opts_chunk$set(echo = TRUE) 1 Package Invoking library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.2 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.2 ✔ tibble 3...

514 sym R (5538 sym/27 pcs) 3 img

Statistical Modeling VII a - Covariate Project Data Manipulation

10.09.2023

knitr::opts_chunk$set(echo = TRUE) library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union 1 Original Data Loading df_brand_tags <- read.csv("/Users/apple/Quantitative\...

231 sym R (4884 sym/8 pcs)

Statistical Modeling IV - Unsupervised Learning for RFM Clustering with K-Means and Gaussian Mixture Modeling

21.08.2023

1 RFM with K-Means Clustering 1.1 Data Normalization First, we need to filter out rows with R_trans == Inf and then scale the features to have zero mean and unit variance. RFM_score_t_filtered <- RFM_score_t[RFM_score_t$R_trans != Inf,] data_t <- RFM_score_t_filtered[, c("R_trans", "F_trans", "M_trans")] data_t_normalized <- scale(data_t) 1.2 D...

11207 sym 2 img

Statistical Modeling III - Panel View and Supervised Learning for RFM Score Ranking Classification

20.08.2023

1 Panel View Let’s first take a look at the structure of customer/project pair over time in the unit of bi-week. imputed_PDF_biweek_indiv_clean$account_created_at <- as.Date(imputed_PDF_biweek_indiv_clean$account_created_at) imputed_PDF_biweek_indiv_clean <- imputed_PDF_biweek_indiv_clean |> group_by(user_project_pair) |> mutate(min_biwe...

8416 sym Python (17944 sym/44 pcs) 7 img

Statistical Modeling II - Visualization of Causal Panel Analysis on inKind Data

07.08.2023

1 Reconciliation Adjustment We first correct the definition of reconciliation. It is now based on the sums rather than cumsum defined in Reconciliation Analysis I [1]. PDF <- PDF |> group_by(user_id, project_id) PDF$is_reconcilable <- NULL sums <- PDF |> summarise(sum_total_redemption_amount = sum(total_redemption_amount), sum_credi...

2891 sym Python (7134 sym/21 pcs) 5 img

Statistical Modeling I - Bayesian Synthetic Control With Different Latent Factor Models on Germany Reunification

07.08.2023

1 Pre-processing the Germany Reunification data rstan_options(auto_write = TRUE) options(mc.cores = parallel::detectCores()) d <- read.dta("/Users/apple/Desktop/Path\ Towards\ Quant\ Mkt\ PhD/Collected\ Data/Germany\ Reunification/repgermany.dta") df_avg <- d |> group_by(index, country) |> summarize_at(c("gdp", "infrate", "trade", "industry"...

868 sym Python (50468 sym/21 pcs) 2 img