Publications by Yucheng Zhang
AIReflection1
1 PREPARATION 2 ILLUSTRATION-FULL MODEL: M ON X 2.1 Model X=AI facilitated reflection (W.X) M=WA.ProblemSolvingPonderingV W=BA.AIServiceFailureV 2.2 Study 1 基于原始值的调节分析 \[Y=i_Y+b_1X+b_2W+b_3XW+e_Y\] \[Y=i_y+(b_1+b_3W)X+b_2W+e_Y\] 判断标准:同号同向加强(++更正/–更负);异号反向削弱(+-不那么�...
1011 sym 4 img
一带一路2
1 DATA PREPARATION 2 ANALYSIS ## **** Running ma_r: Meta-analysis of correlations **** ## Cleaning reliability information 3 FULL RESULTS analysis_idconstruct_xconstruct_yUSorNOTkNmean_rsd_resmean_rhosd_rhoCI_LL_95CI_UL_95CR_LL_80CR_UL_80SE 28CPSC.GovernaceAll Levels241.04e+050.0502 0.06410.0627 0.08010.0298 0.0956-0.03990.165 0.0163...
193 sym 1 tbl
Publish Document
1 DATA PREPARATION 2 META-ANALYSIS 2.1 Main effects ## **** Running ma_r: Meta-analysis of correlations **** ## Cleaning reliability information 2.2 Main effect ## TABLE A. Meta-analysis of the correlates of TMX ## ─────────────────────────────────────────...
120 sym
TMX RnR
1 DATA PREPARATION 2 META-ANALYSIS ## **** Running ma_r: Meta-analysis of correlations **** ## Cleaning reliability information ## Descriptive Statistics: ## ─────────────────────────────────────────────────────────────�...
99 sym
Copula
1 PREPARATION createCopula <- function(P){ H.p <- stats::ecdf(P) # 创建经验累积分布函数 H.p <- H.p(P) # 计算经验分布函数的 H.p <- ifelse(H.p==0, 0.0000001, H.p) # 避免0 H.p <- ifelse(H.p==1, 0.9999999, H.p) # 避免1 U.p <- H.p # 赋值处理后的概 p.star <- stats::qnorm(U.p) # 正态分布变 return(p....
2143 sym 6 tbl
R code of migrant status project
1 PREPARATION 1.1 Variables in our analysis Variables in the model X: International migrant status Y.Stress: Stress Y.Wage: Wage is quantified in terms of thousands of Jordanian Dinars per month M: Collective voice (The percentage of management practices adopted by the company constitutes a portion of the types of practices mandated by audit...
2641 sym
JAPanalysis3b
1 PREPARATION 1.1 Merge #- Within variables Wdata=import("C:/Users/Eason Zhang/Dropbox/social impact project/Final analysis/employeedata.sav")%>%as.data.table() numerical_variable_names <- names(Wdata)[sapply(Wdata, is.numeric)] Wdata=group_mean_center(Wdata, numerical_variable_names,by="FactoryAssessedID", add.suffix=".GroC") added(Wdata, {...
4904 sym 191 img
JAPanalysis3
1 PREPARATION 1.1 Merge #- Within variables Wdata=import("C:/Users/Eason Zhang/Dropbox/social impact project/Final analysis/employeedata.sav")%>%as.data.table() numerical_variable_names <- names(Wdata)[sapply(Wdata, is.numeric)] Wdata=group_mean_center(Wdata, numerical_variable_names,by="FactoryAssessedID", add.suffix=".GroC") added(Wdata, {...
947 sym 29 img
ANALYSIS2: Social impact project
1 PREPARATION 1.1 Merge 1.1.1 Analysis 1 Wdata=import("C:/Users/Eason Zhang/Dropbox/social impact project/data/employeedata.sav")%>%as.data.table() numerical_variable_names <- names(Wdata)[sapply(Wdata, is.numeric)] Wdata=group_mean_center(Wdata, numerical_variable_names,by="FactoryAssessedID", add.suffix=".GroC") BMdata=import("C:/Users/E...
1183 sym 4 img
ANALYSIS1: Social impact project
1 PREPARATION 1.1 Merge Wdata=import("C:/Users/Eason Zhang/Dropbox/social impact project/employeedata.sav")%>%as.data.table() numerical_variable_names <- names(Wdata)[sapply(Wdata, is.numeric)] Wdata=group_mean_center(Wdata, numerical_variable_names,by="FactoryAssessedID", add.suffix=".GroC") BMdata=import("C:/Users/Eason Zhang/Dropbox/socia...
916 sym 4 img