Publications by Nasir Mahmood Abbasi

Filtering and Visualization(MAST, LR and negbinom on SCT)

14.02.2025

1. Load Libraries 2. Load Data 2.1 Load CSV Files with Mean Expression # Load the CSV files with mean expression data markers_mast_SCT <- read.csv("../0-robj/1-MAST_with_SCT_batch_patient_cellline_as_Covariate_with_meanExpression.csv", row.names = 1) markers_LR_SCT <- read.csv("../0-robj/1-LR_with_SCT_batch_patient_cellline_as_Covariate_with_me...

20911 sym 12 img

Filtering and Visualization(MAST on SCT and RNA) on cell_line and default_minpct_logfc

12.02.2025

1. Load Libraries 2. Load Data 2.1 Load CSV Files with Mean Expression # Load the CSV files with mean expression data markers_mast_SCT <- read.csv("../0-robj/RNA_SCT_test_default_pct_fc_parameters/1-MAST_with_SCT_batch_cellline_as_Covariate_with_meanExpression.csv", row.names = 1) markers_mast_RNA <- read.csv("../0-robj/RNA_SCT_test_default_pct...

15569 sym 8 img

Filtering and Visualization(MAST on SCT and RNA)

11.02.2025

1. Load Libraries 2. Load Data 2.1 Load CSV Files with Mean Expression # Load the CSV files with mean expression data markers_mast_SCT <- read.csv("../0-robj/1-MAST_with_SCT_batch_patient_cellline_as_Covariate_with_meanExpression.csv", row.names = 1) markers_mast_RNA <- read.csv("../0-robj/2-MAST_with_RNA_batch_patient_cellline_as_Covariate_wit...

13881 sym 8 img

MAST on SCT and RNA assay and its comparison to see which is better with default settings

10.02.2025

1. Load Libraries 2. load seurat object #Load Seurat Object L7 load("../0-robj/5-Harmony_Integrated_All_samples_Merged_CD4Tcells_final_Resolution_Selected_0.8_ADT_Normalized_cleaned_mt.robj") All_samples_Merged An object of class Seurat 62900 features across 49305 samples within 6 assays Active assay: SCT (26176 features, 3000 variable features...

17136 sym R (12659 sym/51 pcs) 8 img

Filtering and Visualization(MAST on SCT and RNA

09.02.2025

1. Load Libraries 2. Load Data 2.1 Load CSV Files with Mean Expression # Load the CSV files with mean expression data markers_mast_SCT <- read.csv("../0-robj/1-MAST_with_SCT_batch_patient_cellline_as_Covariate_with_meanExpression.csv", row.names = 1) markers_mast_RNA <- read.csv("../0-robj/2-MAST_with_RNA_batch_patient_cellline_as_Covariate_wit...

12586 sym 8 img

Filtering and Visualization(MAST on SCT and RNA

09.02.2025

1. Load Libraries 2. Load Data 2.1 Load CSV Files with Mean Expression # Load the CSV files with mean expression data markers_mast_SCT <- read.csv("../0-robj/1-MAST_with_SCT_batch_patient_cellline_as_Covariate_with_meanExpression.csv", row.names = 1) markers_mast_RNA <- read.csv("../0-robj/2-MAST_with_RNA_batch_patient_cellline_as_Covariate_wit...

14005 sym 8 img

MAST on SCT and RNA assay and its comparison to see which is better

08.02.2025

1. Load Libraries 2. load seurat object #Load Seurat Object L7 load("../0-robj/5-Harmony_Integrated_All_samples_Merged_CD4Tcells_final_Resolution_Selected_0.8_ADT_Normalized_cleaned_mt.robj") All_samples_Merged 3. Set Up Identifiers for Clustering # Assign cluster identities to the Seurat object Idents(All_samples_Merged) <- "seurat_clusters" D...

14427 sym R (9175 sym/27 pcs) 7 img

Sézary Syndrome Cell Line Analysis

07.02.2025

In this we have comapred cell_lines using MAST but using cell_line ident not clusters and its seem if you use cluster you get better results with MAST 1. load libraries #Differential Expression Analysis 2. load seurat object #Load Seurat Object L7 load("../0-robj/5-Harmony_Integrated_All_samples_Merged_CD4Tcells_final_Resolution_Selected_0.8_ADT_...

31040 sym R (245538 sym/168 pcs) 29 img

VolcanoPlot_Malignant_vs_normal

06.02.2025

1. Load Libraries 2. Load Data 2.1 Load CSV Files with Mean Expression # Load the CSV files with mean expression data markers_mast_batch <- read.csv("1-MAST_with_batch_as_Covariate_with_meanExpression.csv", row.names = 1) 3. Volcano Plots for All Genes 3.1 Volcano Plot for MAST with Batch Correction EnhancedVolcano(markers_mast_batch, ...

2908 sym 2 img

Sézary Syndrome Cell Line derived from each patient DE comparison

06.02.2025

In this notebook we will be using clusters for each patient to comapre and we will be using MAST to see if that could improve results or we similar results as Wilcox. 1. load libraries #Differential Expression Analysis 2. load seurat object #Load Seurat Object L7 load("../0-robj/5-Harmony_Integrated_All_samples_Merged_CD4Tcells_final_Resolution_S...

22470 sym R (140289 sym/75 pcs) 26 img