Publications by Max Haussmann

DAT3100_Apply2

18.09.2024

Goal: The goal is to predict the Youtube like count. Click here for the data. Import Data youtube <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-03-02/youtube.csv') ## Rows: 247 Columns: 25 ## ── Column specification ──────────────────────────...

561 sym R (22458 sym/30 pcs) 6 img 11 tbl

DAT3100//Apply1

11.09.2024

Goal: The goal is to predict the Youtube like count. Click here for the data. Import Data youtube <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-03-02/youtube.csv') ## Rows: 247 Columns: 25 ## ── Column specification ──────────────────────────...

410 sym 5 img 5 tbl

DAT3100_CodeAlong1

04.09.2024

Goal: to predict the rental prices in the SF rental market. Click here for the data. Import Data rent <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') ## Rows: 200796 Columns: 17 ## ── Column specification ────────────────────────�...

309 sym 4 img 3 tbl

Apply to your Data 12

26.04.2024

Import your data data("mtcars") mtcars <- as_tibble(mtcars) library(readxl) # excel file mydata <- read_excel("../00_data/data/myData.xlsx") mydata ## # A tibble: 9,355 × 12 ## work_year job_title job_category salary_currency salary salary_in_usd ## <dbl> <chr> <chr> <chr> <dbl> <dbl> ## 1 ...

479 sym R (8091 sym/35 pcs) 1 img

Code Along 12

23.04.2024

Ch 20 Vectors 1 Introduction 2 Vector basics 3 Important types of atomic vector 4 Using atomic vectors sample(10) + 10 ## [1] 13 14 12 17 20 15 11 19 18 16 1.10 + 1:2 ## [1] 2.1 3.1 1.10 + 1:3 ## [1] 2.1 3.1 4.1 data.frame(a=1:10, b=1:2) ## a b ## 1 1 1 ## 2 2 2 ## 3 3 1 ## 4 4 2 ## 5 5 1 ## 6 6 2 ## 7 7 1 ## 8 8 2 ## 9 9...

330 sym Python (1647 sym/41 pcs)

Apply to your Data 11

18.04.2024

Import your data data(flights) flights %>% skimr::skim() Data summary Name Piped data Number of rows 336776 Number of columns 19 _______________________ Column type frequency: character 4 numeric 14 POSIXct 1 ________________________ Group variables None Variable type: character skim_variable n_missing complete_rate min max empty n_un...

533 sym R (4218 sym/27 pcs) 4 tbl

Code Along 11

14.04.2024

Introduction When should you write a function? # For reproducible work set.seed(1234) # Create a data frame df <- tibble::tibble( a = rnorm(10), b = rnorm(10), c = rnorm(10), d = rnorm(10) ) # Rescale each column df$a <- (df$a - min(df$a, na.rm = TRUE)) / (max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE)) df$b <- (df$b - min(df$b, na...

293 sym

Apply to your Data 10

11.04.2024

Import your data library(readxl) # excel file data <- read_excel("../00_data/data/myData.xlsx") data ## # A tibble: 9,355 × 12 ## work_year job_title job_category salary_currency salary salary_in_usd ## <dbl> <chr> <chr> <chr> <dbl> <dbl> ## 1 2023 AI Architect Machine Learning… USD ...

336 sym R (5851 sym/19 pcs) 2 img

Code Along 10

09.04.2024

Chapter 15 Factors Creating factors General Social Survey gss_cat ## # A tibble: 21,483 × 9 ## year marital age race rincome partyid relig denom tvhours ## <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int> ## 1 2000 Never married 26 White $8000 to 9999 Ind,near … Prot… Sout… ...

436 sym 4 img

Apply to your Data 9

03.04.2024

Import your data library(readxl) # excel file data <- read_excel("../00_data/data/myData.xlsx") data ## # A tibble: 9,355 × 12 ## work_year job_title job_category salary_currency salary salary_in_usd ## <dbl> <chr> <chr> <chr> <dbl> <dbl> ## 1 2023 AI Architect Machine Learning… USD ...

112 sym R (3372 sym/14 pcs)