Publications by Kenton Quaglieri

Codealong3_performance _analysis

15.09.2024

# Load Packages library(tidyverse) ## Warning: package 'forcats' was built under R version 4.3.3 ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.4 ✔ readr 2.1.5 ## ✔ forcats 1.0.0 ✔ stringr 1.5.1 ## ✔ ggplot2 ...

143 sym R (5390 sym/13 pcs)

Apply 2 Fin3100

11.09.2024

Import stock prices stocks <- tq_get(c("NOC", "WMT","UPS","UNH"), get = "stock.prices", from = "2016-01-01") stocks %>% glimpse() ## Rows: 8,744 ## Columns: 8 ## $ symbol <chr> "NOC", "NOC", "NOC", "NOC", "NOC", "NOC", "NOC", "NOC", "NOC"… ## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-...

206 sym Python (7252 sym/21 pcs) 1 img

SF Rental

10.09.2024

Goal: to predict the rental prices in the SF Rental Market click here for the data. Import Data rent <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') ## Rows: 200796 Columns: 17 ## ── Column specification ────────────────────────�...

312 sym 4 img 3 tbl

Document

09.09.2024

Import data flights ## # A tibble: 336,776 × 19 ## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time ## <int> <int> <int> <int> <int> <dbl> <int> <int> ## 1 2013 1 1 517 515 2 830 819 ## 2 2013 1 1 533 529 ...

444 sym Python (19037 sym/49 pcs) 1 img

Document

09.09.2024

Coding basics R as a calculator 1000 / 10 ## [1] 100 x <- 1000 / 10 # x assignment symbol What’s in a name? Calling functions Use of TAB seq(from = 1, to = 10, by = 1) ## [1] 1 2 3 4 5 6 7 8 9 10 continuation character, + seq(from =1, to = 10) ## [1] 1 2 3 4 5 6 7 8 9 10 Printing to screen y <- seq(from =1, to = 10) y...

171 sym Python (229 sym/9 pcs)

Apply1

04.09.2024

Import stock prices stocks <- tq_get(c("NOC", "WMT","UPS","UNH"), get = "stock.prices", from = "2016-01-01") stocks ## # A tibble: 8,724 × 8 ## symbol date open high low close volume adjusted ## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 NOC 2016-01-04 186. 188. 1...

50 sym Python (1064 sym/3 pcs) 1 img

Week2CodeAlong1

01.09.2024

Welcome Ch1 Introduction The data science project workflow Prerequisites R RStudio r packages Install the tidyverse package Running R code 1+2 ## [1] 3 Getting help Google Stackoverflow Ch2 Introduction to Data Exploration Ch3 Data Visualization Set up library(tidyverse) ## Warning: package 'forcats' was built under R version 4.3.3 data...

1381 sym R (1829 sym/13 pcs) 7 img

code along 12

23.04.2024

Chapter 20 Vectors Introduction vector basics Important types of atomic vectors Using automic Vectors sample(10) + 10 ## [1] 16 13 19 15 18 11 20 14 12 17 1:10 + 1:2 ## [1] 2 4 4 6 6 8 8 10 10 12 1:10 + 1:3 ## Warning in 1:10 + 1:3: longer object length is not a multiple of shorter object ## length ## [1] 2 4 6 5 7 9 8 10 12 1...

345 sym Python (2219 sym/50 pcs)

Document

18.04.2024

Import your data data(flights) flights %>% skimr::skim() Data summary Name Piped data Number of rows 336776 Number of columns 19 _______________________ Column type frequency: character 4 numeric 14 POSIXct 1 ________________________ Group variables None Variable type: character skim_variable n_missing complete_rate min max empty n_u...

471 sym 8 tbl

Document

16.04.2024

Introduction When Should You Write a Funtions # reproducible work set.seed(1234) # Create a Data Frame df <- tibble::tibble( a = rnorm(10), b = rnorm(10), c = rnorm(10), d = rnorm(10)) # Rescale each column df$a <- (df$a - min(df$a, na.rm = TRUE)) / (max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE)) df$b <- (df$b - min(df$b...

282 sym