Publications by Keeno Glanville

DATA608-HW2

25.09.2023

Register for API keys Within this assignment I will be utilizing data from the Bureau of Labor Statistics Public Data API and the Federal Reserve Board. In order to obtain the data I require I will sign up for API keys from both of these organizations. https://fred.stlouisfed.org/docs/api/api_key.html https://data.bls.gov/registrationEngine/ API...

1554 sym R (5018 sym/18 pcs) 2 img

DATA621 HW2

08.09.2023

1 raw <- read_csv('https://raw.githubusercontent.com/kglan/MSDS/main/DATA621/HW2/classification-output-data.csv', col_names = TRUE) ## Rows: 181 Columns: 11 ## ── Column specification ─────────────────────────────────────────────────────�...

169 sym 3 img 2 tbl

Data621 HW2

08.09.2023

1. Dataset raw <- read_csv('https://raw.githubusercontent.com/kglan/MSDS/main/DATA621/HW2/classification-output-data.csv', col_names = TRUE) ## Rows: 181 Columns: 11 ## ── Column specification ──────────────────────────────────────────────────�...

1894 sym 3 img 2 tbl

DATA621-HW1

07.09.2023

DATA EXPLORATION Within this data set there are 2276 observations of 16 variables. The main focal point of this data is that we want to predict the target wins that a team will have over a given parameters. To first attack the data set there was some basic cleaning to remove the unnecessary naming within the columns. We then did some exploratio...

3742 sym R (72312 sym/72 pcs) 17 img

DATA605 Final Part 1

18.05.2023

Using R, generate a random variable X that has 10,000 random Gamma pdf values. A Gamma pdf is completely describe by n (a size parameter) and lambda (λ , a shape parameter). Choose any n greater 3 and an expected value (λ) between 2 and 10 (you choose) n <- 5 # Size parameter lambda <- 4 # Shape X <- rgamma(10000, shape = n, rate = lambda...

3245 sym

DATA605 Assignment10 Redo

14.05.2023

Smith is in jail and has 1 dollar; he can get out on bail if he has 8 dollars. A guard agrees to make a series of bets with him. If Smith bets A dollars, he wins A dollars with probability .4 and loses A dollars with probability .6. Find the probability that he wins 8 dollars before losing all of his money if (a) he bets 1 dollar each time (tim...

906 sym

Data605 Taylor Series

08.05.2023

Load Package library(pracma) ## Warning: package 'pracma' was built under R version 4.2.2 f(x) = 1/(1-x) f1 <- function(x) { 1 / (1 - x) } a1 <- 0 n1 <- 5 taylor(f1,a1,n1) ## [1] 1.000293 1.000029 1.000003 1.000000 1.000000 1.000000 f(x) = e^x f1 <- function(x) { exp(x) } a1 <- 0 n1 <- 5 taylor(f1,a1,n1) ## [1] 0.008334245 0.041666573 0.166...

94 sym R (562 sym/10 pcs)

DATA 605 Discussion 13

28.04.2023

4.2 Excercise 3 h <- 1 dVdt <- 5 1cm r <- 1 cat(dVdt/(2* pi* r), "cm/s") ## 0.7957747 cm/s 10cm r <- 10 cat(dVdt/(2* pi* r), "cm/s") ## 0.07957747 cm/s 100cm r <- 100 cat(dVdt/(2* pi* r), "cm/s") ## 0.007957747 cm/s...

49 sym

DATA605 - discussion Week 14

28.04.2023

8.8 Excercise 21-24 In Exercises 21 – 24, write out the first 5 terms of the Binomial series with the givenk-value. 21.k=½ 22.k= -1/2 23.k=1/3 24.k=4 Binomial Series : (1+x)^k = 1 + kx + (k(k-1)/2!) x^2 + (k(k-1)(k-2)/3!) x^3 + (k(k-1)(k-2)(k-3)/4!) x^4 + … x <-2 #Binomial k = 1/2 # Find the first 5 terms of the Binomial series for k = 1/2 ...

307 sym

Regression Analysis Life Expectancy

24.04.2023

plot(x =df$TotExp , y= df$LifeExp) 1 model <- lm(LifeExp ~ TotExp, data=df) summary(model) ## ## Call: ## lm(formula = LifeExp ~ TotExp, data = df) ## ## Residuals: ## Min 1Q Median 3Q Max ## -24.764 -4.778 3.154 7.116 13.292 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (...

198 sym 2 img