Publications by Job Boonstoppel

DAT 3100 Code Along 3

21.09.2024

Goal: to predict the rental prices in the SF rental market Click here for the data. Import Data rent <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') skimr::skim(rent) Data summary Name rent Number of rows 200796 Number of columns 17 _______________________ Column type frequen...

314 sym R (22971 sym/24 pcs) 5 img 3 tbl

DAT 3100 Apply 2

19.09.2024

Click here to read the data manually. Import and Clean Data ikea <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') skimr::skim(ikea) Data summary Name ikea Number of rows 3694 Number of columns 14 _______________________ Column type frequency: character 7 logical 1 numeric 6...

3240 sym 6 img 4 tbl

DAT 3100 Code Along 2

17.09.2024

Goal: to predict the rental prices in the SF rental market Click here for the data. Import Data rent <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') skimr::skim(rent) Data summary Name rent Number of rows 200796 Number of columns 17 _______________________ Column type frequen...

307 sym R (21562 sym/18 pcs) 4 img 3 tbl

DAT 3100 Apply 1

09.09.2024

Click here to read the data manually. Import and Clean Data ikea <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') skimr::skim(ikea) Data summary Name ikea Number of rows 3694 Number of columns 14 _______________________ Column type frequency: character 7 logical 1 numeric 6...

1422 sym 4 img 4 tbl

DAT 3100 Code Along 1

05.09.2024

Goal: to predict the rental prices in the SF rental market Click here for the data. Import Data rent <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-07-05/rent.csv') skimr::skim(rent) Data summary Name rent Number of rows 200796 Number of columns 17 _______________________ Column type frequen...

307 sym 4 img 3 tbl

DAT 3000 Apply 12

20.04.2024

Import your data data("mtcars") # My dataset data <- read_excel("myData_charts.xlsx") data %>% skimr::skim() Data summary Name Piped data Number of rows 45090 Number of columns 10 _______________________ Column type frequency: character 1 logical 1 numeric 7 POSIXct 1 ________________________ Group variables None Variable type: charact...

567 sym Python (10522 sym/37 pcs) 2 img 10 tbl

DAT 3000 Apply 11

14.04.2024

Import your data # My dataset data(flights) data <- read_excel("myData_charts.xlsx") data %>% skimr::skim() Data summary Name Piped data Number of rows 45090 Number of columns 10 _______________________ Column type frequency: character 1 logical 1 numeric 7 POSIXct 1 ________________________ Group variables None Variable type: characte...

635 sym 9 tbl

DAT 3000 CodeAlong 12

14.04.2024

Ch 20 Vectors 1 Introduction Textbook reading. 2 Vector basics Textbook reading. 3 Important types of automic vector Textbook reading. 4 Using automic vectors sample(10) + 10 ## [1] 20 19 15 18 14 16 12 13 17 11 1:10 + 1:2 ## [1] 2 4 4 6 6 8 8 10 10 12 1:10 + 1:3 ## Warning in 1:10 + 1:3: longer object length is not a multiple of short...

462 sym Python (2137 sym/52 pcs)

DAT 3000 CodeAlong 11

10.04.2024

Chapter 19 Introduction We should you write a function? # For reproducible work set.seed(1234) # Create a data frame df <- tibble::tibble( a = rnorm(10), b = rnorm(10), c = rnorm(10), d = rnorm(10) ) # Rescale each column df$a <- (df$a - min(df$a, na.rm = TRUE)) / (max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE)) df$b <- (df$b - mi...

301 sym

DAT 3000 Apply 10

09.04.2024

Import your data # excel file data <- read_excel("myData_charts.xlsx") data ## # A tibble: 45,090 × 10 ## stock_symbol date open high low close adj_close volume ## <chr> <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 AAPL 2010-01-04 00:00:00 7.62 7.66 7.58 7.64 6.52 4937296...

335 sym 2 img