Publications by Jessie Eastburn

lidR for smartieS

13.06.2023

This document has two exercises that will teach you the basics of working in R with lidar data. The goal of these exercises is to teach you how to acquire and process lidar data in R, given the spatial coordinates of a field plot, with the goal of generating a canopy height model (CHM), digital terrain model (DTM), and digital surface model (DSM). ...

7378 sym R (2070 sym/14 pcs) 8 img 1 tbl

Thesis Code 02/01/23

01.02.2023

Read PJ Plot Metrics Data metrics = read.csv("plot_level_structure_vs_lidar_metrics_20220923_nodups_by_date.csv") VSURF for Metrics Data set.seed(4077) #x.vars = as.data.frame(metrics[,13:109]) #define independent (predictor) variables in metrics dataframe #y.var = metrics[,10] #define dependent variable (AGB) in metrics dataframe #metrics.vsu...

2846 sym Python (46429 sym/53 pcs) 18 img 9 tbl

Geog6000_Lab14_Point_Pattern

03.12.2021

library(spatstat) library(sf) Read R code for reading Urkiola shape file and converting to ppp object # Tree locations urkiola.sf <- st_read("datafiles/urkiola/urkiola.shp") ## Reading layer `urkiola' from data source ## `/Users/jessieeastburn/Documents/Fall 2021/GEOG 6000/datafiles/urkiola/urkiola.shp' ## using driver `ESRI Shapefile' ## S...

1021 sym R (3492 sym/24 pcs) 12 img

Lab_13_Geostatistics 2

29.11.2021

set.seed(436) Load libraries library(ggplot2) library(gstat) library(RColorBrewer) library(sf) ## Linking to GEOS 3.8.1, GDAL 3.2.1, PROJ 7.2.1 library(stars) ## Loading required package: abind ## Registered S3 methods overwritten by 'stars': ## method from ## st_bbox.SpatRaster sf ## st_crs.SpatRaster sf library(viridis) ## ...

1171 sym R (4288 sym/30 pcs) 8 img

GEOG6000_Lab10_Spatial_Regression_2

19.11.2021

Load Libraries Read in Data bos = st_read("datafiles/boston.tr/boston.shp", quiet = TRUE) Log-transform corrected median house values per tract bos$CMEDV.log = log(bos$CMEDV) Create a map of house prices plot(st_geometry(bos$geometry)) my.pal <- brewer.pal(9, "YlOrRd") plot(bos["CMEDV.log"], main = "Log Corrected Median Housing Prices", ...

1650 sym R (3901 sym/19 pcs) 3 img

GEOG6000_Lab07_Multivariate_Analysis

29.10.2021

Exercise 1 Read in data boston = read.csv("/Users/jessieeastburn/Documents/Fall 2021/GEOG 6000/datafiles/boston6k.csv") Load in packages Subset to variables needed and scale subset boston2 = boston[c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT")] boston2= scale(boston2) boston2.s = scale(boston2...

2737 sym R (13353 sym/25 pcs) 5 img

GEOG6000_Lab06_Modeling4

21.10.2021

Exercise 1 Read in data gap = read.csv("datafiles/gapminderData5.csv") library(ggplot2) library(nlme) Use the tapply() function to estimate the mean life expectancy by country tapply(gap$lifeExp, gap$country, mean) ## Afghanistan Albania Algeria ## 37.47883 68.43292 ...

1644 sym R (10888 sym/26 pcs) 2 img

GEOG6000_Lab05_Modeling_3

07.10.2021

Exercise 1 Set working directory setwd("/Users/jessieeastburn/Documents/Fall 2021/GEOG 6000") Read in data island2 = read.csv("../GEOG 6000/datafiles/island2.csv") Build a model relating species presence to the island characteristics. Factor incidence from 0 and 1 to present and absent. 0 is absent and 1 is present island2$incidence = factor(isla...

2282 sym R (5448 sym/27 pcs) 3 img

GEOG6000_Lab02_Inference

15.09.2021

EXERCISE 1 The null hypothesis is there is no significant difference between the temperatures of males and females. The alternative hypothesis is there is a significant difference between the temperatures of males and females. Read in data normtemp = read.csv("/Users/jessieeastburn/Documents/Fall 2021/GEOG 6000/datafiles/normtemp.csv") names(norm...

1508 sym R (1378 sym/10 pcs) 1 img

GEOG6000_Lab04_Modeling2

27.09.2021

Exercise 1 Read in State Data CSV and set variable. statedata = read.csv("../datafiles/statedata.csv") Make a new dataframe that excludes the first column of statedata statedata2 = statedata[,-1] Build the null model (mod0) and full model (mod1) Full model: mod.1 <- lm(Life.Exp ~ ., data = statedata2) Null model: mod.0 <- lm(Life.Exp ~ 1, data = ...

3125 sym R (10837 sym/52 pcs)