Publications by Imelda Sianturi

Exercise week 6

11.10.2020

1 Exercise 1.1 Exercise 1 Please work out in R by doing a chi-squared test on the treatment (X) and improvement (Y) columns in treatment.csv. data.imelda <- read.csv("treatment.csv") print(data.imelda) ## id treatment improvement ## 1 1 treated improved ## 2 2 treated improved ## 3 3 not-treated improv...

6250 sym R (9224 sym/19 pcs) 1 img

Hypothesis Testing

27.09.2020

1 Introduction As a data scientist you probably retain or reject hypothesis based on measurements of observed samples. The decision is often based on a statistical mechanism called hypothesis testing. Let’s watching the following video: There are three conditions of having hypothesis testing included: Left Tailed Test: When the \(\bar{x}\) is...

66488 sym R (11230 sym/79 pcs) 5 img

Solving Nonlinear Equations

26.09.2020

1 Bisection Method The bisection method is another approach to finding the root of a continuous function \(f(x)\) on an interval \([a,b]\). The method takes advantage of a corollary of the intermediate value theorem called Bolzano’s theorem which states that if the values of \(f(a)\) and \(f(b)\) have opposite signs, the interval must contain a...

38322 sym R (7314 sym/38 pcs) 18 img

Confidence Intervals

20.09.2020

1 Brief Introduction Please watching this video, to get some ideas about Confidence Intervals (CI) 2 CI in Business This video guide you, how can you apply Confidence Intervals in Business. 3 Your Exercise In this section, your expected to get familiar with confidential intervals exercise: 3.1 Exercise 1 Find a point estimate of average univer...

32363 sym R (7330 sym/86 pcs) 6 img

Linear Programming Modeling

18.09.2020

Case Study 1 Suppose a farmer has 75 acres on which to plant two crops: wheat and barley. To produce these crops, it costs the farmer (for seed, fertilizer, etc.) $120 per acre for the wheat and $210 per acre for the barley. The farmer has $15000 available for expenses. But after the harvest, the farmer must store the crops while awaiting avourab...

10620 sym R (5875 sym/36 pcs) 1 img

Probability Distribution

14.09.2020

1 Binomial Distribution 1.1 Question What is a binomial distribution in Statistics? What is binomial distribution used for? Please argue 4 requirements needed to be a binomial distribution? Is a binomial distribution a normal distribution? Suppose there are twenty multiple choice questions in an Statistics class quiz. Each question has five pos...

38204 sym R (864 sym/21 pcs) 2 img

General Optimization

04.10.2020

1 General Optimization In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints or the objective function are nonlinear. An optimization problem is one of calculation of the extrema (maxima, minima or stationary points) of an objective function over a set of unknown real variables...

48022 sym R (9934 sym/37 pcs) 8 img

Expectation Maximization Algorithm

14.10.2020

1 Latihan 12 Exepektasi Maksimal Di kelas ini kita akan menerapkan algoritma Expectation Maximization untuk memperkirakan parameter Campuran Gaussian. Metode ini menyediakan pengklasifikasi tanpa pengawasan yang sangat berguna ketika distribusi Gaussian diasumsikan. Misalkan kita ingin memodelkan parameter populasi yang diasumsikan sebagai salah ...

15552 sym R (4160 sym/12 pcs) 8 img

Times Series: Midterm

15.10.2020

library(stats) library(MARSS) library(forecast) library(datasets) 1 AR Mari kita mulai dengan mensimulasikan beberapa model AR(1) dan membandingkan perilaku mereka. Pertama, mari kita pilih model dengan koefisien AR yang kontras. Ingat bahwa agar model AR(1) stasioner, \(\varphi < |1|\), jadi kita akan mencoba 0,1 dan 0,8. Kami akan kembali m...

9090 sym R (2938 sym/9 pcs) 4 img

Midterm: Statistical Computing

28.10.2020

1 Inferensi dalam Regresi Linier Setelah membaca bagian ini, kita akan dapat: Memahami distribusi perkiraan regresi. Membuat perkiraan interval untuk parameter regresi, respon rata-rata, dan prediksi. Dapat melakukan uji signifikansi regresi Model regresi linear yang sederhana, biasa di modelkan sebagai berikut, \[Y_i = \beta_0 + \beta_1 x_i + ...

81909 sym R (10007 sym/81 pcs) 10 img