Publications by Haliyeva

ESG indicator performance in resource rich countries: Analysis of post-Soviet space

20.04.2023

Executive summary Data from the World Bank has shown that post-soviet nations, which are richer in natural resource rent (% of GDP) have worse ESG indicators compared to nations who have less natural resource rent (% of GDP). Natural resource rent (% of GDP) has been decreasing in all observed countries over the observed time-frame. Increased ...

13662 sym 14 img

Analysis

20.04.2023

Inequality in total natural resources rents (% of GDP) among post-Soviet countries can be attributed to the uneven distribution of natural resources across the region.Some countries possess substantial resource endowments, which significantly contribute to their GDP, while others have limited or less valuable natural resources. This disparity ...

6963 sym 14 img

Data cleaning

20.04.2023

library(tidyverse) ## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ── ## ✔ ggplot2 3.4.1 ✔ purrr 1.0.1 ## ✔ tibble 3.1.8 ✔ dplyr 1.1.0 ## ✔ tidyr 1.3.0 ✔ stringr 1.5.0 ## ✔ readr 2.1.2 ✔...

3113 sym R (3914 sym/6 pcs)

Explanatory analysis and data visualizations part second

20.04.2023

Install required packages install.packages(“dcurves”) install.packages(“gtsummary”) install.packages(“tidyr”) install.packages(“DCA”) install.packages(“pROC”) install.packages(“dplyr”) install.packages(“openxlsx”) install.packages(“gridExtra”) install.packages(“ggplot2”) load required libraries library(dcurv...

5539 sym

Explanatory analysis and data visualizations part third

20.04.2023

load required libraries library(quarto) library(tidyverse) Load the data into a data frame df <- data.frame( Country = c(“USA”, “China”, “Japan”, “Germany”, “France”), Debt_GDP_Ratio = c(105.6, 66.2, 237.6, 65.4, 98.5), Debt_Per_Capita = c(62000, 54000, 76000, 47000, 69000), Debt_to_Income_Ratio = c(3.2, 2.5, 4.1, 2.8, 3.6) ...

1978 sym

Explanatory_analysis_fourth_part

20.04.2023

Install required packages if not already installed install.packages(c(“quarto”, “tidyverse”, “ggplot2”, “dplyr”)) Load required libraries library(quarto) library(tidyverse) Load data df <- data.frame( Country = c(“USA”, “China”, “Japan”, “Germany”, “France”), Debt_GDP_Ratio = c(105.6, 66.2, 237.6, 65.4, 98.5),...

2594 sym

Pie chart of sector-wise distribution

20.04.2023

...

4 sym 2 img