Publications by Yehezkiel Lazarus

Week6_Optimization

20.10.2020

1 Praktek 12: Ekspektasi Maksimalisasi Dalam kelas ini kita akan menggunakan algoritma Ekspektasi Maksimalisasi untuk mengestimasi parameter Campuran Gaussian. Metode ini menyediakan pengklasifikasi yang tidak terjaga dan sangat berguna ketika distribusi Gaussian diasumsukan. Misalkan kita ingin memodelkan parameter populasi yang diasumsikan menj...

12481 sym R (1945 sym/11 pcs) 3 img

MIdterm Exam ARW

15.10.2020

SIMULASI AR(1) Simulating an AR(p) process set.seed(456) ## list description for AR(1) model with small coef AR.sm <- list(order = c(1, 0, 0), ar = 0.1, sd = 0.1) ## list description for AR(1) model with large coef AR.lg <- list(order = c(1, 0, 0), ar = 0.9, sd = 0.1) ## simulate AR(1) AR1.sm <- arima.sim(n = 50, model = AR.sm) AR1.lg <- ...

585 sym R (4860 sym/16 pcs) 5 img

Optimization Week 5

06.10.2020

1 General Optimization In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints or the objective function are nonlinear. An optimization problem is one of calculation of the extrema (maxima, minima or stationary points) of an objective function over a set of unknown real variables...

47937 sym R (8725 sym/33 pcs) 8 img

CS_Week_4

27.09.2020

1 Introduction As a data scientist you probably retain or reject hypothesis based on measurements of observed samples. The decision is often based on a statistical mechanism called hypothesis testing. Let’s watching the following video: There are three conditions of having hypothesis testing included: Left Tailed Test: When the \(\bar{x}\) is...

47301 sym R (6695 sym/41 pcs) 1 img

Optimization

25.09.2020

1 Bisection Method The bisection method is another approach to finding the root of a continuous function \(f(x)\) on an interval \([a,b]\). The method takes advantage of a corollary of the intermediate value theorem called Bolzano’s theorem which states that if the values of \(f(a)\) and \(f(b)\) have opposite signs, the interval must contain a...

41085 sym R (7260 sym/38 pcs) 14 img

Komputasi Statistik 2

21.09.2020

1 Binomial Distribution 1.1 Question What is a binomial distribution in Statistics? What is binomial distribution used for? Please argue 4 requirements needed to be a binomial distribution? Is a binomial distribution a normal distribution? Suppose there are twenty multiple choice questions in an Statistics class quiz. Each question has five pos...

24126 sym R (560 sym/16 pcs)

Komputasi Statistik 3

21.09.2020

1 Brief Introduction Please watching this video, to get some ideas about Confidence Intervals (CI) 2 CI in Business This video guide you, how can you apply Confidence Intervals in Business. 3 Your Exercise In this section, your expected to get familiar with confidential intervals exercise: 3.1 Exercise 1 Find a point estimate of average univer...

7593 sym R (1298 sym/20 pcs) 1 img

Yehezkiel_Week6_Computation

20.10.2020

library(ggplot2) library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(tidyr) library(ggthemes) ## Warning: package 'ggthemes' was built under R version ...

4377 sym R (1333 sym/17 pcs) 1 img

UTS Optimasi

28.10.2020

1 Question: Find the maximum solution to \(Z=4x+3y\) Suppose that the objective function is subject to the following constraints: \(x≥0\) \(y≥2\) \(2y≤25−x\) \(4y≤2x−8\) \(y≤2x−5\) 1.1 Answer: # Import lpSolve package library(lpSolve) ## Warning: package 'lpSolve' was built under R version 3.6.2 # Set coefficients of the objecti...

2558 sym R (3981 sym/27 pcs) 2 img

UTS Komputasi Statistik

28.10.2020

1 Bab 8 Dugaan dalam Regresi Linier Setelah membaca bagian ini, Anda akan mampu untuk: * Memahami distribusi perkiraan regresi. * Membuat perkiraan interval untuk parameter regresi, respon rata-rata, dan prediksi. * Uji signifikansi regresi. Pada bagian akhir, kita akan mendefinisikan model regresi linier sederhana, \(Y_i=\beta_0+\beta_1x_1+\epsi...

77244 sym R (10077 sym/81 pcs) 9 img