Publications by Dirk Hartog

Data 624_Project 1

30.03.2025

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.4 ✔ readr 2.1.5 ## ✔ forcats 1.0.0 ✔ stringr 1.5.1 ## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1 ## ...

15371 sym R (37855 sym/229 pcs) 52 img

Data 624_Homework 6

22.03.2025

library(tidyverse) library(fpp3) library(seasonal) library(fable) SECTION 9: ARIMA models EXERCISE 9.1 Figure 9.32 shows the ACFs for 36 random numbers, 360 random numbers and 1,000 random numbers. a. Explain the differences among these figures. Do they all indicate that the data are white noise? The first key differenece between each of these ...

9756 sym R (20037 sym/116 pcs) 43 img

Data 624_Homework 5

09.03.2025

library(tidyverse) library(fpp3) library(seasonal) library(fable) SECTION 8: Exponential smoothing Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older. EXERCISE 8.1 Consider the the number of pigs slaughtered in Victoria, availabl...

7298 sym R (21338 sym/83 pcs) 23 img

Homework wk5

02.03.2025

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.4 ✔ readr 2.1.5 ## ✔ forcats 1.0.0 ✔ stringr 1.5.1 ## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1 ## ...

5408 sym R (17183 sym/63 pcs) 18 img

Data 624_Homework 3

23.02.2025

library(tidyverse) library(fpp3) library(seasonal) library(fable) EXERCISE 5.1 Produce forecasts for the following series using whichever of NAIVE(y), SNAIVE(y) or RW(y ~ drift()) is more appropriate in each case: a. Australian Population (global_economy) Time Series plot of Australian population aus_pop <- global_economy %>% filter(Country == "...

7126 sym R (9639 sym/58 pcs) 32 img

DAT624_Homework 2

17.02.2025

library(tidyverse) library(fpp3) library(seasonal) library(plotly) EXERCISE 3.1 Consider the GDP information in global_economy. Plot the GDP per capita for each country over time. Which country has the highest GDP per capita? How has this changed over time? head(global_economy,5) glimpse(global_economy) ## Rows: 15,150 ## Columns: 9 ## Key: Coun...

8248 sym R (8003 sym/50 pcs) 28 img

Data 624_Homework 1

09.02.2025

library(tidyverse) library(fpp3) EXERCISE 2.1 Explore the following four time series: - Bricks from aus_production - Lynx from pelt - Close from gafa_stock - Demand from vic_elec. a. Use ? (or help()) to find out about the data in each series. # read in the time series ?aus_production ?pelt ?gafa_stock ?vic_elec b. What is the time interval of ...

12125 sym R (16535 sym/132 pcs) 42 img

Final Exam - Data 605

16.05.2024

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.4 ✔ readr 2.1.5 ## ✔ forcats 1.0.0 ✔ stringr 1.5.1 ## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1 ## ...

9189 sym R (46797 sym/111 pcs) 14 img

Homework wk15

08.05.2024

Question 1: Find the equation of the regression line for the given points. Round any final values to the nearest hundredth, if necessary. (5.6,8.8), (6.3,12.4), (7,14.8), (7.7,18.2), (8.4,20.8) library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ─�...

5646 sym R (1892 sym/10 pcs) 1 img

Discussion board 15

07.05.2024

Chapter 12: Exercises 6 and 8 Evaluate \(f_x(x,y)\) and \(f_y(x,y)\) at the indicated point. We need to find the derivatives with respect to x and y separately and then evaluate them at the given point. 6. \(f(x,y) = x^3 - 3x + y^2 -6y ~at ~(-1,3)\) a. Partial derivative with respect to x \(f_x(x,y)\) \(\frac{df}{dx} x^3 - 3x + y^2 -6y\) Differen...

1607 sym