Publications by Daniel Lee

Code along 8

07.11.2023

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ## ...

1062 sym R (7457 sym/49 pcs) 5 img

Apply 6

07.11.2023

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ## ...

1001 sym R (11224 sym/51 pcs) 4 img

Jason Zink - Apply 9

06.11.2023

Import your data # csv file jobs_gender <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-03-05/jobs_gender.csv") Chapter 14 Tools Detect matches jobs_gender$occupation str_detect(jobs_gender$occupation, "Computer programmers") sum(str_detect(jobs_gender$occupation, "Computer programmers")) ...

102 sym

Real World Applications 10

06.11.2023

Assume Daewoo, a hypothetical oil extraction company, has the following cost structure. It spends: • $40/barrel on labor costs, raw materials, energy, and • $35/barrel on interest, depreciation, insurance, and administrative staff expense. Read the textbook carefully, and answer the following questions. A recession hits, the market price of...

727 sym

Kmeans Clusting: Himalayan Climbing Expeditions

04.11.2023

library(tidyverse) members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv') Prepare data Goal: Is there any relationship between peaks and seasons in terms of deaths? Preparing data Please understand why Julia prepared the employment data the way shed did. For her scree...

905 sym R (4097 sym/13 pcs) 2 img

apply 8

04.11.2023

library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ## ...

886 sym R (9459 sym/36 pcs) 1 img

Code Along 9

03.11.2023

# Load packages # Core library(tidyverse) library(tidyquant) Goal five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31 1 Import stock prices symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG") prices <- tq_get(x = symbols, get = "stock.prices", from = "2012-...

352 sym R (5359 sym/18 pcs) 3 img

CodeApply 9

02.11.2023

Import your data survivalists <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-01-24/survivalists.csv') ## Rows: 94 Columns: 16 ## ── Column specification ─────────────────────────────────────────────...

123 sym

Codealong9 CH7

01.11.2023

# Load packages # Core library(tidyverse) library(tidyquant) Goal Collect individual returns into a portfolio by assigning a weight to each stock five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31 1 Import stock prices # Choose stocks symbols <- c("AGG", "EEM", "EFA", "IJS", "SPY") prices <- tq_get...

448 sym R (4852 sym/20 pcs) 3 img

Apply to Data 8

01.11.2023

# Load packages # Core library(tidyverse) library(tidyquant) Goal Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis. Choose your stocks. from 2012-12-31 to present to = "2017-12-31" ## 1 Import stock prices # Choose stocks symbols <- c("AAPL", "NVDA", "ADBE", "AVGO",...

571 sym R (1998 sym/13 pcs)