Publications by Betty
lab 7
library(tidyverse) library(broom) library(table1) library(car) library(GGally) library(easystats) library(modelsummary) library(gt) library(lme4) library (datawizard) library(lmerTest) library(modelsummary) library(broom) install.packages("Matrix") install.packages("lme4") library(lme4) library(Matrix) finches <- read_rds("data/geospiza.rds") Exer...
2180 sym Python (10109 sym/44 pcs) 11 img 1 tbl
Lab 6
Question 1: Create a table1 and use GGally::ggpairs to explore your data. label(nsduh$demog_sex) <- "Sex" label(nsduh$alc_agefirst) <- "Age at first alcohol use" label(nsduh$demog_age_cat6) <- "Age" label(nsduh$demog_income) <- "Income" title <- "Lifetime Marijuana Use" table1(~alc_agefirst + demog_age_cat6 + demog_sex + demog_...
4987 sym 2 img 5 tbl
5
# Write your code here library(tidyverse) library(broom) library(table1) library(car) library(GGally) library(easystats) library(modelsummary) library(gt) natality <- read_rds("data/natality.rds") knitr::opts_chunk$set(echo = TRUE) library(tidyverse) library(broom) library(table1) library(car) library(GGally) library(easystats) library(modelsummary...
5366 sym 5 img 3 tbl
Team 3_Lab7
Exercise 1 Create a table1 and use GGally::ggpairs to explore your data. conirostris(N=185) difficilis(N=102) fortis(N=510) fuliginosa(N=318) magnirostris(N=90) scandens(N=229) Overall(N=1434) Beak height (mm) Mean (SD) 14.9 (1.63) 8.17 (0.494) 12.3 (1.29) 8.00 (0.508) 19.9 (1.83) 9.56 (0.584) 11.4 (3.39) Median [Min, Max] 15.0 [10.5, 18.7] 8...
2144 sym 11 img 1 tbl
Lab 6
Question 1: Create a table1 and use GGally::ggpairs to explore your data. No(N=491) Yes(N=509) Age at first alcohol use Mean (SD) 19.7 (5.09) 16.0 (3.08) Median [Min, Max] 19.0 [3.00, 45.0] 16.0 [3.00, 29.0] Missing 145 (29.5%) 12 (2.4%) Age 18-25 53 (10.8%) 80 (15.7%) 26-34 52 (10.6%) 87 (17.1%) 35-49 129 (26.3%) 136 (26.7%) 50-64 109 (2...
4969 sym 2 img 5 tbl
Lab 6
Question 1: Create a table1 and use GGally::ggpairs to explore your data. No(N=491) Yes(N=509) Age at first alcohol use Mean (SD) 19.7 (5.09) 16.0 (3.08) Median [Min, Max] 19.0 [3.00, 45.0] 16.0 [3.00, 29.0] Missing 145 (29.5%) 12 (2.4%) Age 18-25 53 (10.8%) 80 (15.7%) 26-34 52 (10.6%) 87 (17.1%) 35-49 129 (26.3%) 136 (26.7%) 50-64 109 (2...
4969 sym 2 img 5 tbl
Lab 5: team3
Exercise 1 Question: Use the table1 package to create a table with appropriate descriptive information about the data set. Use the examples provided in the following vignette to help you build a table. Maternal demographics stratified by smoking No(N=1564) Yes(N=124) Birth Weight Mean (SD) 3250 (601) 3070 (597) Median [Min, Max] 3290 [369, 5880...
5085 sym 5 img 3 tbl
Lab 5
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ## ✔ purrr 1.0.2...
2841 sym Python (19087 sym/20 pcs) 5 img 1 tbl
Lab 5
# Write your code here library(tidyverse) ## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── ## ✔ dplyr 1.1.3 ✔ readr 2.1.4 ## ✔ forcats 1.0.0 ✔ stringr 1.5.0 ## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1 ## ✔ lubridate 1.9.2 ...
3178 sym Python (23854 sym/46 pcs) 5 img 2 tbl
Lab 3 Bethlehem
The full assignment for this lab can be found here In this lab, you will assume that \(\pi=62\%\) is the very true population proportion. In reality, we cannot observe this value, but for the purpose of this lab we will create this hypothetical population. We will then sample our data from our hypothetical population, exploring how samples vary fro...
6438 sym 5 img