Publications by Assignment 01

Statistical-Modelling

16.09.2024

Question 1: A) set.seed(123) # Define caffeine levels and corresponding number of students and A grades caffeine_levels <- c(0, 50, 100, 150, 200) # Caffeine levels n_students <- rep(300, 5) # Number of students per group a_grades <- c(109, 155, 175, 158, 103) # Number of A grades # Create the initial data frame Caffeine2.df <- data.fra...

2872 sym R (12476 sym/37 pcs) 2 img

Document

16.09.2024

Question 1 library(mgcv) ## Loading required package: nlme ## This is mgcv 1.9-1. For overview type 'help("mgcv-package")'. Caffeine.df <- read.csv("Caffeine.csv") ## null model (order 0) mod.0=glm(cbind(Agrade,n-Agrade)~1, family=binomial, data =Caffeine.df) ## linear (order 1) mod.1=glm(cbind(Agrade,n-Agrade)~caffeine, family=binomial, dat...

13361 sym R (11108 sym/63 pcs) 8 img

Document

16.09.2024

General comments: All the plots should be labelled appropriately (axes, legends, titles). Please submit both your .Rmd, and the generated output file .html or .pdf on Canvas before the due date/time. Please make sure that the .Rmd file compiles without any errors. The marker will not spend time fixing the bugs in your code. Please avoid specifying...

16833 sym Python (10634 sym/56 pcs) 10 img

statistical Computing

16.09.2024

Question 1: [Basics] DHBsmoking <- read.csv("tobacco-regions-2011-2014.csv") head(DHBsmoking) ## region prevalence ## 1 Northland 25.0 ## 2 Waitematā 14.5 ## 3 Auckland 12.4 ## 4 Counties Manukau 17.3 ## 5 Waikato 21.2 ## 6 Bay of Plenty 20.8 Question 2: [Gr...

12892 sym Python (19530 sym/63 pcs) 5 img

statistical Computing

16.09.2024

General Commentary (data discription): The data provided for the assignent are the prevalence rate of smoking and vaping. The vaping data shows the prevlance of daily vapers in various demographics, as well as gender, age range and whether they are disabled or not across different years from 2011 to 2022. These variables are the same in the smo...

6239 sym Python (17076 sym/61 pcs) 7 img

stats-326-assignment-1-time-series-analysis

14.09.2024

@import url('https://fonts.googleapis.com/css2?family=Lato:ital@1&display=swap'); h1, h2, h3, h4 {font-family: 'Lato', sans-serif; font-weight: bold} body {font-family: 'Oswald', sans-serif;; background-color: #eff5f5} General comments: All the plots should be labelled appropriately (axes, legends, titles). There will be marks al...

10442 sym Python (4229 sym/16 pcs) 9 img 1 tbl