Young people (ages 15-24) newly infected with HIV

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 500 0% 30
Angola Angola 4,600 -2.13% 12
Albania Albania 100 0% 32
Armenia Armenia 100 0% 32
Azerbaijan Azerbaijan 100 0% 32
Burundi Burundi 500 0% 30
Belgium Belgium 100 0% 32
Benin Benin 500 0% 30
Burkina Faso Burkina Faso 500 0% 30
Bangladesh Bangladesh 500 0% 30
Bulgaria Bulgaria 100 0% 32
Bahamas Bahamas 100 0% 32
Belarus Belarus 200 0% 31
Belize Belize 100 0% 32
Bolivia Bolivia 500 0% 30
Barbados Barbados 100 0% 32
Bhutan Bhutan 100 0% 32
Botswana Botswana 1,400 -12.5% 26
Central African Republic Central African Republic 3,000 -9.09% 16
Chile Chile 1,100 0% 28
Côte d’Ivoire Côte d’Ivoire 1,900 -13.6% 22
Cameroon Cameroon 2,600 -21.2% 18
Congo - Kinshasa Congo - Kinshasa 2,900 -21.6% 17
Congo - Brazzaville Congo - Brazzaville 5,000 +11.1% 10
Colombia Colombia 1,000 0% 29
Comoros Comoros 100 0% 32
Cape Verde Cape Verde 100 0% 32
Costa Rica Costa Rica 500 0% 30
Cuba Cuba 1,000 0% 29
Czechia Czechia 100 0% 32
Denmark Denmark 100 0% 32
Dominican Republic Dominican Republic 1,200 -7.69% 27
Algeria Algeria 500 0% 30
Ecuador Ecuador 1,000 0% 29
Egypt Egypt 1,000 0% 29
Eritrea Eritrea 100 0% 32
Estonia Estonia 100 0% 32
Ethiopia Ethiopia 2,400 -11.1% 19
Fiji Fiji 100 0% 32
France France 1,000 0% 29
Gabon Gabon 1,000 0% 29
Georgia Georgia 100 0% 32
Ghana Ghana 4,600 -9.8% 12
Guinea Guinea 1,800 -14.3% 23
Gambia Gambia 500 0% 30
Guinea-Bissau Guinea-Bissau 500 0% 30
Equatorial Guinea Equatorial Guinea 1,100 0% 28
Greece Greece 100 0% 32
Grenada Grenada 100 0% 32
Guatemala Guatemala 500 0% 30
Guyana Guyana 100 0% 32
Honduras Honduras 100 0% 32
Croatia Croatia 100 0% 32
Haiti Haiti 1,700 0% 24
Indonesia Indonesia 12,000 -7.69% 4
Iran Iran 1,000 +100% 29
Iraq Iraq 200 0% 31
Iceland Iceland 100 0% 32
Italy Italy 200 0% 31
Jamaica Jamaica 500 0% 30
Jordan Jordan 100 0% 32
Kenya Kenya 7,300 -18.9% 8
Kyrgyzstan Kyrgyzstan 100 0% 32
Cambodia Cambodia 1,000 0% 29
St. Kitts & Nevis St. Kitts & Nevis 100 0% 32
Laos Laos 500 0% 30
Liberia Liberia 500 -50% 30
Sri Lanka Sri Lanka 100 0% 32
Lesotho Lesotho 1,700 -19% 24
Lithuania Lithuania 100 0% 32
Luxembourg Luxembourg 100 0% 32
Latvia Latvia 100 0% 32
Morocco Morocco 100 0% 32
Moldova Moldova 200 0% 31
Madagascar Madagascar 1,600 0% 25
Maldives Maldives 100 0% 32
Mexico Mexico 8,600 0% 7
North Macedonia North Macedonia 100 0% 32
Mali Mali 1,900 0% 22
Malta Malta 100 0% 32
Myanmar (Burma) Myanmar (Burma) 5,800 +1.75% 9
Montenegro Montenegro 100 0% 32
Mongolia Mongolia 100 0% 32
Mozambique Mozambique 35,000 -18.6% 2
Mauritania Mauritania 100 0% 32
Malawi Malawi 3,800 -17.4% 14
Malaysia Malaysia 1,000 0% 29
Namibia Namibia 2,000 -13% 21
Niger Niger 200 0% 31
Nicaragua Nicaragua 500 0% 30
Nepal Nepal 100 0% 32
New Zealand New Zealand 100 0% 32
Oman Oman 100 0% 32
Panama Panama 1,000 0% 29
Peru Peru 1,000 0% 29
Philippines Philippines 11,000 +10% 5
Papua New Guinea Papua New Guinea 1,700 +6.25% 24
Portugal Portugal 200 0% 31
Qatar Qatar 100 0% 32
Romania Romania 100 0% 32
Rwanda Rwanda 1,000 0% 29
Saudi Arabia Saudi Arabia 500 +150% 30
Sudan Sudan 1,000 0% 29
Senegal Senegal 500 +150% 30
Sierra Leone Sierra Leone 1,200 -20% 27
El Salvador El Salvador 500 0% 30
Serbia Serbia 100 0% 32
South Sudan South Sudan 3,400 0% 15
São Tomé & Príncipe São Tomé & Príncipe 100 0% 32
Suriname Suriname 100 0% 32
Slovakia Slovakia 100 0% 32
Eswatini Eswatini 1,700 -19% 24
Syria Syria 100 0% 32
Chad Chad 1,000 -16.7% 29
Togo Togo 1,000 0% 29
Thailand Thailand 4,400 -2.22% 13
Tajikistan Tajikistan 200 0% 31
Timor-Leste Timor-Leste 100 0% 32
Tanzania Tanzania 9,600 -20% 6
Uganda Uganda 19,000 -5% 3
Uruguay Uruguay 200 -60% 31
Vietnam Vietnam 2,100 -4.55% 20
Yemen Yemen 500 0% 30
South Africa South Africa 56,000 -5.08% 1
Zambia Zambia 12,000 -14.3% 4
Zimbabwe Zimbabwe 4,900 -5.77% 11

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.HIV.INCD.YG'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.HIV.INCD.YG'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))