Women's share of population ages 15+ living with HIV (%)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 29.3 +0.282% 110
Angola Angola 66.4 +0.735% 7
Albania Albania 28.8 +0.826% 113
United Arab Emirates United Arab Emirates 19.4 -4.14% 140
Argentina Argentina 36.3 +0.0697% 86
Armenia Armenia 27.6 -0.601% 119
Australia Australia 12.5 +0.347% 163
Austria Austria 24.2 +0.289% 128
Azerbaijan Azerbaijan 34 +0.204% 91
Burundi Burundi 60.7 +0.226% 38
Belgium Belgium 34.5 -0.758% 90
Benin Benin 65.7 +0.362% 10
Burkina Faso Burkina Faso 64.7 +0.507% 18
Bangladesh Bangladesh 33.4 +0.755% 98
Bulgaria Bulgaria 17.3 -0.894% 150
Bahrain Bahrain 16.1 -0.865% 154
Bahamas Bahamas 48.2 -0.328% 55
Bosnia & Herzegovina Bosnia & Herzegovina 14.4 -1.11% 160
Belarus Belarus 44.2 +0.793% 66
Belize Belize 46.2 +0.478% 60
Bolivia Bolivia 30.4 -0.447% 107
Brazil Brazil 34.5 -1.2% 89
Barbados Barbados 39.5 -0.0736% 77
Brunei Brunei 27.1 -0.284% 121
Bhutan Bhutan 44.8 +0.309% 63
Botswana Botswana 61 +0.371% 36
Central African Republic Central African Republic 64.7 +0.456% 19
Canada Canada 25 +0.626% 127
Switzerland Switzerland 26.9 +0.117% 123
Chile Chile 16.2 -0.0574% 153
China China 30.5 +0.157% 106
Côte d’Ivoire Côte d’Ivoire 67.3 +0.581% 6
Cameroon Cameroon 67.7 +0.273% 5
Congo - Kinshasa Congo - Kinshasa 63.2 +0.294% 25
Congo - Brazzaville Congo - Brazzaville 68.3 +0.454% 4
Colombia Colombia 18.6 -1.68% 145
Comoros Comoros 56.8 +1.61% 44
Cape Verde Cape Verde 52.9 +1.06% 46
Costa Rica Costa Rica 14.8 -1.39% 158
Cuba Cuba 19.2 +0.224% 142
Cyprus Cyprus 16 +0.486% 156
Czechia Czechia 12.5 -1.37% 162
Germany Germany 20 +0.413% 138
Djibouti Djibouti 51.9 +0.565% 47
Denmark Denmark 25.8 +0.176% 126
Dominican Republic Dominican Republic 48.1 +0.0012% 56
Algeria Algeria 47.8 +0.123% 57
Ecuador Ecuador 33.8 -0.689% 93
Egypt Egypt 17.2 -4.7% 151
Eritrea Eritrea 61 +0.458% 35
Spain Spain 17.7 -0.129% 149
Estonia Estonia 40.1 +0.315% 75
Ethiopia Ethiopia 61.6 +0.3% 33
Finland Finland 26.4 +0.225% 125
Fiji Fiji 46.4 -0.0557% 59
France France 33.8 +0.458% 95
Gabon Gabon 71.2 +0.472% 1
United Kingdom United Kingdom 31 +0.17% 105
Georgia Georgia 32.2 +0.13% 101
Ghana Ghana 68.9 +0.468% 3
Guinea Guinea 65.5 +0.631% 11
Gambia Gambia 61.7 +0.518% 32
Guinea-Bissau Guinea-Bissau 66.3 +0.478% 8
Equatorial Guinea Equatorial Guinea 60.2 +1.2% 39
Greece Greece 16.4 +0.0365% 152
Guatemala Guatemala 37.9 -0.878% 80
Guyana Guyana 50.2 +0.158% 50
Honduras Honduras 40.8 -2.13% 74
Croatia Croatia 9.32 -1.78% 168
Haiti Haiti 58.5 +0.425% 42
Hungary Hungary 18.3 +1.81% 148
Indonesia Indonesia 37 -0.148% 84
India India 45.3 +0.455% 62
Ireland Ireland 29.1 +0.622% 111
Iran Iran 33.9 +2.94% 92
Iraq Iraq 41.9 -0.612% 71
Iceland Iceland 27.7 -1.88% 118
Israel Israel 28.2 +0.119% 116
Italy Italy 27 +0.123% 122
Jamaica Jamaica 50.4 +0.416% 49
Jordan Jordan 18.7 -1.37% 143
Japan Japan 7.78 -2.66% 170
Kazakhstan Kazakhstan 40.1 +0.0736% 76
Kenya Kenya 66 +0.276% 9
Kyrgyzstan Kyrgyzstan 42.6 +0.158% 69
Cambodia Cambodia 49.5 -1.11% 52
South Korea South Korea 9.71 +0.175% 167
Kuwait Kuwait 18.4 -1.72% 147
Laos Laos 38.9 -1.16% 78
Lebanon Lebanon 10.3 -1.24% 166
Liberia Liberia 65.3 +0.403% 14
Libya Libya 37.5 +0.305% 83
Sri Lanka Sri Lanka 29 -1.31% 112
Lesotho Lesotho 62.1 +0.438% 31
Lithuania Lithuania 22.5 +2.54% 131
Luxembourg Luxembourg 28.4 +0.524% 115
Latvia Latvia 33.7 +0.813% 96
Morocco Morocco 44.6 -0.89% 65
Moldova Moldova 36.4 +0.991% 85
Madagascar Madagascar 69.8 -0.11% 2
Maldives Maldives 22 +2.82% 132
Mexico Mexico 19.3 -0.59% 141
North Macedonia North Macedonia 7.71 -1.62% 171
Mali Mali 64.3 +0.149% 20
Malta Malta 21 -1.07% 135
Myanmar (Burma) Myanmar (Burma) 41.1 -0.451% 73
Montenegro Montenegro 11.8 -0.876% 164
Mongolia Mongolia 20.4 +0.767% 136
Mozambique Mozambique 64.3 +0.391% 21
Mauritania Mauritania 49.3 -0.327% 53
Mauritius Mauritius 49.6 +1.05% 51
Malawi Malawi 62.4 +0.457% 29
Malaysia Malaysia 19.9 +0.567% 139
Namibia Namibia 64.9 +0.543% 16
Niger Niger 57.1 +0.216% 43
Nigeria Nigeria 64.8 +0.27% 17
Nicaragua Nicaragua 33.6 -0.614% 97
Netherlands Netherlands 18.6 +0.303% 144
Norway Norway 32.4 +0.209% 100
Nepal Nepal 44.7 +0.437% 64
New Zealand New Zealand 16.1 +0.256% 155
Oman Oman 26.6 -0.581% 124
Pakistan Pakistan 18.5 -0.977% 146
Panama Panama 27.2 -0.791% 120
Peru Peru 23.8 +0.327% 130
Philippines Philippines 6.63 +1.58% 172
Papua New Guinea Papua New Guinea 61.2 +0.684% 34
Poland Poland 24.1 +27.3% 129
North Korea North Korea 42.8 -0.823% 68
Portugal Portugal 30.3 +0.0785% 108
Paraguay Paraguay 32.2 -0.112% 102
Qatar Qatar 21.1 -1.43% 134
Romania Romania 37.8 -1.73% 81
Russia Russia 32.5 +0.921% 99
Rwanda Rwanda 63 +0.258% 26
Saudi Arabia Saudi Arabia 15.1 -5.17% 157
Sudan Sudan 48.3 -0.113% 54
Senegal Senegal 59 +0.216% 41
Singapore Singapore 8.55 -0.932% 169
Sierra Leone Sierra Leone 62.9 +0.609% 27
El Salvador El Salvador 33.8 -0.118% 94
Somalia Somalia 53.1 +0.609% 45
Serbia Serbia 13.2 -2.76% 161
South Sudan South Sudan 63.8 +0.477% 23
São Tomé & Príncipe São Tomé & Príncipe 59.8 +0.748% 40
Suriname Suriname 46.1 +0.401% 61
Slovakia Slovakia 14.4 +24.7% 159
Slovenia Slovenia 10.5 -0.902% 165
Sweden Sweden 31 +0.109% 104
Eswatini Eswatini 64.1 +0.66% 22
Syria Syria 28.5 -0.997% 114
Chad Chad 62.3 +0.436% 30
Togo Togo 65.3 +0.614% 15
Thailand Thailand 41.3 -1.14% 72
Tajikistan Tajikistan 37.5 +0.351% 82
Turkmenistan Turkmenistan 32 +0.132% 103
Timor-Leste Timor-Leste 43.8 -0.732% 67
Trinidad & Tobago Trinidad & Tobago 51 -0.177% 48
Tunisia Tunisia 38.3 -0.271% 79
Turkey Turkey 20.3 -1.36% 137
Tanzania Tanzania 65.3 +0.336% 12
Uganda Uganda 63.4 +0.368% 24
Ukraine Ukraine 42.2 -11.9% 70
Uruguay Uruguay 34.7 +0.324% 88
United States United States 21.9 -0.134% 133
Uzbekistan Uzbekistan 47.2 +0.117% 58
Venezuela Venezuela 28.2 -0.251% 117
Vietnam Vietnam 29.7 -1.35% 109
Yemen Yemen 35.6 +0.22% 87
South Africa South Africa 65.3 +0.297% 13
Zambia Zambia 62.6 +0.376% 28
Zimbabwe Zimbabwe 60.8 +0.218% 37

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DYN.AIDS.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DYN.AIDS.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))