Voice and Accountability: Number of Sources

Source: worldbank.org, 19.12.2024

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 1 0% 14
Afghanistan Afghanistan 9 0% 6
Angola Angola 13 0% 2
Albania Albania 10 0% 5
Andorra Andorra 2 0% 13
United Arab Emirates United Arab Emirates 8 0% 7
Argentina Argentina 12 0% 3
Armenia Armenia 9 0% 6
Antigua & Barbuda Antigua & Barbuda 2 0% 13
Australia Australia 10 0% 5
Austria Austria 9 0% 6
Azerbaijan Azerbaijan 9 0% 6
Burundi Burundi 9 0% 6
Belgium Belgium 9 0% 6
Benin Benin 12 0% 3
Burkina Faso Burkina Faso 13 0% 2
Bangladesh Bangladesh 11 0% 4
Bulgaria Bulgaria 11 0% 4
Bahrain Bahrain 7 0% 8
Bahamas Bahamas 5 +25% 10
Bosnia & Herzegovina Bosnia & Herzegovina 9 0% 6
Belarus Belarus 8 0% 7
Belize Belize 5 +25% 10
Bolivia Bolivia 12 0% 3
Brazil Brazil 13 0% 2
Barbados Barbados 4 0% 11
Brunei Brunei 4 0% 11
Bhutan Bhutan 6 0% 9
Botswana Botswana 12 0% 3
Central African Republic Central African Republic 9 +12.5% 6
Canada Canada 10 0% 5
Switzerland Switzerland 7 0% 8
Chile Chile 12 0% 3
China China 10 0% 5
Côte d’Ivoire Côte d’Ivoire 13 0% 2
Cameroon Cameroon 13 0% 2
Congo - Kinshasa Congo - Kinshasa 13 0% 2
Congo - Brazzaville Congo - Brazzaville 11 0% 4
Colombia Colombia 12 0% 3
Comoros Comoros 8 0% 7
Cape Verde Cape Verde 8 0% 7
Costa Rica Costa Rica 11 0% 4
Cuba Cuba 6 0% 9
Cayman Islands Cayman Islands 1 0% 14
Cyprus Cyprus 9 0% 6
Czechia Czechia 11 0% 4
Germany Germany 10 0% 5
Djibouti Djibouti 8 0% 7
Dominica Dominica 2 0% 13
Denmark Denmark 9 0% 6
Dominican Republic Dominican Republic 11 0% 4
Algeria Algeria 10 0% 5
Ecuador Ecuador 11 0% 4
Egypt Egypt 12 0% 3
Eritrea Eritrea 8 0% 7
Spain Spain 10 0% 5
Estonia Estonia 10 0% 5
Ethiopia Ethiopia 11 -8.33% 4
Finland Finland 9 0% 6
Fiji Fiji 5 0% 10
France France 10 0% 5
Micronesia (Federated States of) Micronesia (Federated States of) 1 -50% 14
Gabon Gabon 11 0% 4
United Kingdom United Kingdom 10 0% 5
Georgia Georgia 9 0% 6
Ghana Ghana 14 +7.69% 1
Guinea Guinea 13 +8.33% 2
Gambia Gambia 13 0% 2
Guinea-Bissau Guinea-Bissau 9 +12.5% 6
Equatorial Guinea Equatorial Guinea 8 0% 7
Greece Greece 9 0% 6
Grenada Grenada 3 +50% 12
Greenland Greenland 1 0% 14
Guatemala Guatemala 11 0% 4
Guyana Guyana 6 -14.3% 9
Hong Kong SAR China Hong Kong SAR China 9 0% 6
Honduras Honduras 12 0% 3
Croatia Croatia 11 0% 4
Haiti Haiti 9 0% 6
Hungary Hungary 11 0% 4
Indonesia Indonesia 11 0% 4
India India 12 0% 3
Ireland Ireland 9 0% 6
Iran Iran 8 0% 7
Iraq Iraq 8 0% 7
Iceland Iceland 7 0% 8
Israel Israel 7 0% 8
Italy Italy 10 0% 5
Jamaica Jamaica 10 0% 5
Jordan Jordan 11 0% 4
Japan Japan 9 0% 6
Kazakhstan Kazakhstan 12 0% 3
Kenya Kenya 13 0% 2
Kyrgyzstan Kyrgyzstan 11 0% 4
Cambodia Cambodia 8 0% 7
Kiribati Kiribati 2 0% 13
St. Kitts & Nevis St. Kitts & Nevis 2 0% 13
South Korea South Korea 11 0% 4
Kuwait Kuwait 8 +14.3% 7
Laos Laos 6 0% 9
Lebanon Lebanon 9 0% 6
Liberia Liberia 14 0% 1
Libya Libya 9 +12.5% 6
St. Lucia St. Lucia 2 0% 13
Liechtenstein Liechtenstein 3 0% 12
Sri Lanka Sri Lanka 10 0% 5
Lesotho Lesotho 11 0% 4
Lithuania Lithuania 10 0% 5
Luxembourg Luxembourg 9 0% 6
Latvia Latvia 10 0% 5
Macao SAR China Macao SAR China 1 0% 14
Morocco Morocco 12 0% 3
Monaco Monaco 1 0% 14
Moldova Moldova 10 0% 5
Madagascar Madagascar 13 0% 2
Maldives Maldives 5 0% 10
Mexico Mexico 13 0% 2
Marshall Islands Marshall Islands 1 -50% 14
North Macedonia North Macedonia 9 0% 6
Mali Mali 13 0% 2
Malta Malta 8 0% 7
Myanmar (Burma) Myanmar (Burma) 9 0% 6
Montenegro Montenegro 9 +28.6% 6
Mongolia Mongolia 11 0% 4
Mozambique Mozambique 14 0% 1
Mauritania Mauritania 11 0% 4
Mauritius Mauritius 10 0% 5
Malawi Malawi 13 0% 2
Malaysia Malaysia 11 0% 4
Namibia Namibia 11 0% 4
Niger Niger 13 0% 2
Nigeria Nigeria 14 +7.69% 1
Nicaragua Nicaragua 10 -9.09% 5
Netherlands Netherlands 9 0% 6
Norway Norway 9 0% 6
Nepal Nepal 10 0% 5
Nauru Nauru 1 0% 14
New Zealand New Zealand 10 0% 5
Oman Oman 6 0% 9
Pakistan Pakistan 10 0% 5
Panama Panama 10 0% 5
Peru Peru 12 0% 3
Philippines Philippines 11 0% 4
Palau Palau 1 0% 14
Papua New Guinea Papua New Guinea 9 0% 6
Poland Poland 11 0% 4
Puerto Rico Puerto Rico 3 +50% 12
North Korea North Korea 6 0% 9
Portugal Portugal 10 0% 5
Paraguay Paraguay 11 0% 4
Palestinian Territories Palestinian Territories 6 +20% 9
Qatar Qatar 8 0% 7
Romania Romania 11 0% 4
Russia Russia 10 0% 5
Rwanda Rwanda 10 0% 5
Saudi Arabia Saudi Arabia 9 0% 6
Sudan Sudan 12 0% 3
Senegal Senegal 13 0% 2
Singapore Singapore 10 0% 5
Solomon Islands Solomon Islands 4 0% 11
Sierra Leone Sierra Leone 13 0% 2
El Salvador El Salvador 12 0% 3
San Marino San Marino 1 0% 14
Somalia Somalia 9 0% 6
Serbia Serbia 10 0% 5
South Sudan South Sudan 8 0% 7
São Tomé & Príncipe São Tomé & Príncipe 8 0% 7
Suriname Suriname 7 +16.7% 8
Slovakia Slovakia 11 0% 4
Slovenia Slovenia 11 0% 4
Sweden Sweden 10 0% 5
Eswatini Eswatini 11 0% 4
Seychelles Seychelles 6 0% 9
Syria Syria 7 0% 8
Chad Chad 10 0% 5
Togo Togo 13 0% 2
Thailand Thailand 11 0% 4
Tajikistan Tajikistan 8 0% 7
Turkmenistan Turkmenistan 6 0% 9
Timor-Leste Timor-Leste 6 0% 9
Tonga Tonga 3 0% 12
Trinidad & Tobago Trinidad & Tobago 9 +12.5% 6
Tunisia Tunisia 13 0% 2
Turkey Turkey 10 0% 5
Tuvalu Tuvalu 2 0% 13
Tanzania Tanzania 13 0% 2
Uganda Uganda 13 0% 2
Ukraine Ukraine 10 0% 5
Uruguay Uruguay 10 0% 5
United States United States 11 0% 4
Uzbekistan Uzbekistan 9 0% 6
St. Vincent & Grenadines St. Vincent & Grenadines 2 0% 13
Venezuela Venezuela 12 0% 3
Vietnam Vietnam 10 0% 5
Vanuatu Vanuatu 4 0% 11
Samoa Samoa 3 0% 12
Kosovo Kosovo 8 0% 7
Yemen Yemen 8 +14.3% 7
South Africa South Africa 13 0% 2
Zambia Zambia 12 0% 3
Zimbabwe Zimbabwe 13 0% 2

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'VA.NO.SRC'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'VA.NO.SRC'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))