Voice and Accountability

Source: worldbank.org, 19.12.2024

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 1.02 +0.593% 37
Afghanistan Afghanistan -1.85 +5.67% 196
Angola Angola -0.737 -8.71% 143
Albania Albania 0.169 +19.2% 90
Andorra Andorra 0.997 -9.93% 40
United Arab Emirates United Arab Emirates -1.09 -2.89% 162
Argentina Argentina 0.534 -2.27% 71
Armenia Armenia 0.0767 -15.1% 97
Antigua & Barbuda Antigua & Barbuda 0.742 +2.39% 57
Australia Australia 1.51 +13.8% 9
Austria Austria 1.41 -0.17% 14
Azerbaijan Azerbaijan -1.41 -2.09% 181
Burundi Burundi -1.37 -2.11% 176
Belgium Belgium 1.33 +2.21% 16
Benin Benin -0.219 -34.8% 118
Burkina Faso Burkina Faso -0.81 +18.4% 148
Bangladesh Bangladesh -0.754 +0.0776% 144
Bulgaria Bulgaria 0.389 +35.3% 77
Bahrain Bahrain -1.38 -2.86% 177
Bahamas Bahamas 0.86 -1.37% 49
Bosnia & Herzegovina Bosnia & Herzegovina -0.319 -1.62% 122
Belarus Belarus -1.67 +2.44% 192
Belize Belize 0.539 +0.688% 70
Bolivia Bolivia -0.265 +34.3% 120
Brazil Brazil 0.383 +70% 78
Barbados Barbados 1.16 +2.57% 25
Brunei Brunei -0.715 -12.3% 141
Bhutan Bhutan 0.2 +27% 88
Botswana Botswana 0.504 +12.1% 72
Central African Republic Central African Republic -1.26 +3.97% 171
Canada Canada 1.48 +2.75% 11
Switzerland Switzerland 1.67 +2.69% 3
Chile Chile 1.02 +4.22% 38
China China -1.5 -6.05% 185
Côte d’Ivoire Côte d’Ivoire -0.375 -4.47% 125
Cameroon Cameroon -1.07 -7.05% 160
Congo - Kinshasa Congo - Kinshasa -1.21 +1.84% 168
Congo - Brazzaville Congo - Brazzaville -1.15 -3.75% 165
Colombia Colombia 0.205 +21.7% 87
Comoros Comoros -0.809 -4.99% 147
Cape Verde Cape Verde 0.958 +1.27% 43
Costa Rica Costa Rica 1.07 -0.326% 35
Cuba Cuba -1.25 -6.75% 170
Cayman Islands Cayman Islands 0.764 +1.15% 54
Cyprus Cyprus 0.975 +14.6% 42
Czechia Czechia 1.08 +3.4% 33
Germany Germany 1.46 +3.32% 12
Djibouti Djibouti -1.27 -1.31% 172
Dominica Dominica 0.786 -1.34% 52
Denmark Denmark 1.66 +4.62% 4
Dominican Republic Dominican Republic 0.326 +4.08% 83
Algeria Algeria -0.98 -3.17% 155
Ecuador Ecuador -0.0619 -326% 110
Egypt Egypt -1.38 -4.9% 178
Eritrea Eritrea -1.86 -1.09% 198
Spain Spain 1.19 +17.5% 24
Estonia Estonia 1.22 +1.5% 22
Ethiopia Ethiopia -1.06 +1.17% 159
Finland Finland 1.63 +1.61% 6
Fiji Fiji 0.186 -229% 89
France France 1.15 +4% 26
Micronesia (Federated States of) Micronesia (Federated States of) 1.09 -3.55% 31
Gabon Gabon -0.919 +4.43% 151
United Kingdom United Kingdom 1.26 +0.245% 19
Georgia Georgia 0.0347 +122% 102
Ghana Ghana 0.41 +2.55% 76
Guinea Guinea -1.15 +5.71% 164
Gambia Gambia -0.041 +0.62% 107
Guinea-Bissau Guinea-Bissau -0.437 +4.72% 126
Equatorial Guinea Equatorial Guinea -1.68 -1.61% 193
Greece Greece 1.01 +5.78% 39
Grenada Grenada 0.754 +6.75% 55
Greenland Greenland 1.27 +0.265% 18
Guatemala Guatemala -0.534 +2.12% 132
Guyana Guyana 0.149 -23.1% 92
Hong Kong SAR China Hong Kong SAR China -0.32 -20.1% 124
Honduras Honduras -0.454 -7.61% 128
Croatia Croatia 0.57 -7.55% 66
Haiti Haiti -1.18 -1.07% 167
Hungary Hungary 0.36 -15.5% 79
Indonesia Indonesia 0.139 -3.46% 93
India India 0.0944 +106% 95
Ireland Ireland 1.48 +2.01% 10
Iran Iran -1.45 -0.48% 184
Iraq Iraq -0.959 +1.09% 152
Iceland Iceland 1.45 +1.29% 13
Israel Israel 0.644 -4.95% 59
Italy Italy 1.12 +3.84% 28
Jamaica Jamaica 0.564 -4.53% 67
Jordan Jordan -0.775 -3.41% 145
Japan Japan 1.11 +8.28% 29
Kazakhstan Kazakhstan -1 -5.93% 156
Kenya Kenya -0.124 -17.7% 115
Kyrgyzstan Kyrgyzstan -0.723 -0.934% 142
Cambodia Cambodia -1.29 -1.34% 174
Kiribati Kiribati 1.09 -0.147% 30
St. Kitts & Nevis St. Kitts & Nevis 0.774 +0.884% 53
South Korea South Korea 0.86 -2.11% 50
Kuwait Kuwait -0.594 -13.2% 136
Laos Laos -1.63 -1.56% 189
Lebanon Lebanon -0.654 +3.75% 137
Liberia Liberia 0.0539 -2,603% 100
Libya Libya -1.39 +0.711% 180
St. Lucia St. Lucia 0.863 +1.85% 48
Liechtenstein Liechtenstein 1.4 +1.93% 15
Sri Lanka Sri Lanka -0.231 +7.74% 119
Lesotho Lesotho 0.0299 -40.3% 103
Lithuania Lithuania 1.07 +0.312% 34
Luxembourg Luxembourg 1.63 +5.92% 5
Latvia Latvia 0.993 +5.93% 41
Macao SAR China Macao SAR China -0.509 -4.12% 131
Morocco Morocco -0.489 -10.3% 130
Monaco Monaco 0.654 -8.67% 58
Moldova Moldova 0.237 +145% 86
Madagascar Madagascar -0.32 +8.8% 123
Maldives Maldives -0.138 -32.9% 116
Mexico Mexico -0.115 -3.9% 114
Marshall Islands Marshall Islands 1.13 +1.79% 27
North Macedonia North Macedonia 0.163 +0.371% 91
Mali Mali -1.01 +9.86% 158
Malta Malta 0.914 -15.5% 44
Myanmar (Burma) Myanmar (Burma) -1.84 +1.79% 195
Montenegro Montenegro 0.342 +24.3% 81
Mongolia Mongolia 0.25 -5.39% 85
Mozambique Mozambique -0.593 +1.22% 135
Mauritania Mauritania -0.656 -10.2% 138
Mauritius Mauritius 0.616 +0.346% 64
Malawi Malawi 0.0756 +21.7% 98
Malaysia Malaysia 0.0876 +20,605% 96
Namibia Namibia 0.584 +2.94% 65
Niger Niger -0.695 +85.2% 139
Nigeria Nigeria -0.548 -8.4% 134
Nicaragua Nicaragua -1.39 +2.76% 179
Netherlands Netherlands 1.56 +0.59% 8
Norway Norway 1.78 -0.192% 1
Nepal Nepal -0.0231 -48.2% 106
Nauru Nauru 0.64 +3.11% 60
New Zealand New Zealand 1.69 +2.19% 2
Oman Oman -1 -12.5% 157
Pakistan Pakistan -0.959 +11.3% 153
Panama Panama 0.548 +1.14% 69
Peru Peru 0.0605 +14.1% 99
Philippines Philippines -0.0168 -69.3% 105
Palau Palau 1.09 +1.54% 31
Papua New Guinea Papua New Guinea 0.00501 -124% 104
Poland Poland 0.626 +3.8% 62
Puerto Rico Puerto Rico 0.453 +1.77% 74
North Korea North Korea -1.98 -2.22% 200
Portugal Portugal 1.21 -3.69% 23
Paraguay Paraguay 0.042 +1,033% 101
Palestinian Territories Palestinian Territories -1.12 +7.96% 163
Qatar Qatar -0.971 -7.42% 154
Romania Romania 0.503 -11.1% 73
Russia Russia -1.29 +1.88% 173
Rwanda Rwanda -0.902 -3.59% 150
Saudi Arabia Saudi Arabia -1.42 -4.56% 182
Sudan Sudan -1.6 +7.39% 188
Senegal Senegal 0.134 -24.3% 94
Singapore Singapore -0.0654 +8.78% 111
Solomon Islands Solomon Islands 0.34 +0.92% 82
Sierra Leone Sierra Leone -0.296 +102% 121
El Salvador El Salvador -0.474 +27.8% 129
San Marino San Marino 1.25 +1.25% 20
Somalia Somalia -1.66 -0.375% 191
Serbia Serbia -0.055 -44% 109
South Sudan South Sudan -1.68 -0.755% 194
São Tomé & Príncipe São Tomé & Príncipe 0.252 -8.78% 84
Suriname Suriname 0.353 -4.38% 80
Slovakia Slovakia 0.912 +2.55% 45
Slovenia Slovenia 1.08 +10.5% 32
Sweden Sweden 1.57 +3.19% 7
Eswatini Eswatini -1.16 -4.62% 166
Seychelles Seychelles 0.556 -6.68% 68
Syria Syria -1.85 -2.18% 197
Chad Chad -1.43 -2.47% 183
Togo Togo -0.783 +3.67% 146
Thailand Thailand -0.45 -27.4% 127
Tajikistan Tajikistan -1.63 -2.33% 190
Turkmenistan Turkmenistan -1.88 -3.24% 199
Timor-Leste Timor-Leste 0.433 -11.5% 75
Tonga Tonga 0.871 +2.46% 47
Trinidad & Tobago Trinidad & Tobago 0.621 -4.41% 63
Tunisia Tunisia -0.213 -14.2% 117
Turkey Turkey -0.861 -7.11% 149
Tuvalu Tuvalu 1.22 +1.39% 21
Tanzania Tanzania -0.534 -18.3% 133
Uganda Uganda -0.696 -13% 140
Ukraine Ukraine -0.101 +331% 113
Uruguay Uruguay 1.28 -0.0879% 17
United States United States 0.878 +2% 46
Uzbekistan Uzbekistan -1.31 -1.6% 175
St. Vincent & Grenadines St. Vincent & Grenadines 0.831 -2.15% 51
Venezuela Venezuela -1.53 -0.87% 186
Vietnam Vietnam -1.24 -3.46% 169
Vanuatu Vanuatu 0.627 +7.13% 61
Samoa Samoa 1.02 +1.75% 36
Kosovo Kosovo -0.0888 +56.8% 112
Yemen Yemen -1.55 -4.29% 187
South Africa South Africa 0.745 +2.99% 56
Zambia Zambia -0.0479 -39.7% 108
Zimbabwe Zimbabwe -1.09 -1.52% 161

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'VA.EST'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'VA.EST'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))