Tuberculosis treatment success rate (% of new cases)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 95 +2.15% 3
Angola Angola 65 -2.99% 32
Albania Albania 89 -1.11% 9
Andorra Andorra 100 0% 1
United Arab Emirates United Arab Emirates 87 +2.35% 11
Argentina Argentina 52 +8.33% 37
Armenia Armenia 84 -2.33% 14
Antigua & Barbuda Antigua & Barbuda 100 +33.3% 1
Australia Australia 86 -2.27% 12
Austria Austria 73 -2.67% 25
Azerbaijan Azerbaijan 82 +1.23% 16
Burundi Burundi 94 -1.05% 4
Benin Benin 91 +1.11% 7
Burkina Faso Burkina Faso 82 0% 16
Bangladesh Bangladesh 95 -2.06% 3
Bahamas Bahamas 87 +13% 11
Bosnia & Herzegovina Bosnia & Herzegovina 47 +2.17% 39
Belarus Belarus 87 +3.57% 11
Belize Belize 75 -6.25% 23
Bolivia Bolivia 79 -1.25% 19
Brazil Brazil 66 +1.54% 31
Barbados Barbados 100 +100% 1
Brunei Brunei 78 +11.4% 20
Bhutan Bhutan 90 -4.26% 8
Botswana Botswana 76 0% 22
Central African Republic Central African Republic 90 +8.43% 8
Canada Canada 74 -6.33% 24
Switzerland Switzerland 65 -13.3% 32
Chile Chile 71 -4.05% 27
China China 95 +1.06% 3
Côte d’Ivoire Côte d’Ivoire 87 +2.35% 11
Cameroon Cameroon 89 +1.14% 9
Congo - Kinshasa Congo - Kinshasa 95 0% 3
Congo - Brazzaville Congo - Brazzaville 82 +5.13% 16
Colombia Colombia 74 +1.37% 24
Comoros Comoros 85 -7.61% 13
Cape Verde Cape Verde 71 -22.8% 27
Cuba Cuba 85 +4.94% 13
Cayman Islands Cayman Islands 100 0% 1
Cyprus Cyprus 26 -49% 43
Czechia Czechia 63 -7.35% 34
Germany Germany 62 -7.46% 35
Denmark Denmark 18 -10% 44
Dominican Republic Dominican Republic 80 -2.44% 18
Algeria Algeria 90 0% 8
Ecuador Ecuador 71 +2.9% 27
Egypt Egypt 87 -1.14% 11
Eritrea Eritrea 94 +1.08% 4
Spain Spain 74 +100% 24
Estonia Estonia 77 -8.33% 21
Ethiopia Ethiopia 86 -1.15% 12
Finland Finland 1 -85.7% 45
Fiji Fiji 50 -10.7% 38
France France 37 0% 42
Gabon Gabon 65 +14% 32
United Kingdom United Kingdom 84 -2.33% 14
Georgia Georgia 87 0% 11
Ghana Ghana 87 0% 11
Guinea Guinea 90 +1.12% 8
Gambia Gambia 87 +3.57% 11
Guinea-Bissau Guinea-Bissau 78 +4% 20
Equatorial Guinea Equatorial Guinea 82 +39% 16
Grenada Grenada 0 -100% 46
Guatemala Guatemala 88 +1.15% 10
Guam Guam 76 -3.8% 22
Guyana Guyana 70 +4.48% 28
Hong Kong SAR China Hong Kong SAR China 79 +6.76% 19
Honduras Honduras 86 +1.18% 12
Croatia Croatia 52 +13% 37
Haiti Haiti 85 +3.66% 13
Hungary Hungary 65 +1.56% 32
Indonesia Indonesia 87 0% 11
India India 89 +2.3% 9
Ireland Ireland 45 +1,400% 40
Iran Iran 84 +1.2% 14
Iraq Iraq 94 +1.08% 4
Iceland Iceland 71 +24.6% 27
Israel Israel 81 -5.81% 17
Jordan Jordan 82 -3.53% 16
Japan Japan 65 +1.56% 32
Kazakhstan Kazakhstan 90 +1.12% 8
Kenya Kenya 89 +2.3% 9
Kyrgyzstan Kyrgyzstan 83 +2.47% 15
Cambodia Cambodia 96 +1.05% 2
Kiribati Kiribati 86 0% 12
South Korea South Korea 79 -1.25% 19
Kuwait Kuwait 100 0% 1
Laos Laos 88 +1.15% 10
Lebanon Lebanon 85 -3.41% 13
Liberia Liberia 78 0% 20
Libya Libya 60 -3.23% 36
St. Lucia St. Lucia 50 +100% 38
Sri Lanka Sri Lanka 79 -1.25% 19
Lesotho Lesotho 80 +3.9% 18
Lithuania Lithuania 87 +1.16% 11
Macao SAR China Macao SAR China 81 -1.22% 17
Morocco Morocco 87 0% 11
Moldova Moldova 85 +6.25% 13
Madagascar Madagascar 75 -9.64% 23
Maldives Maldives 69 -10.4% 29
Mexico Mexico 70 -1.41% 28
Marshall Islands Marshall Islands 83 -7.78% 15
North Macedonia North Macedonia 67 -15.2% 30
Mali Mali 84 +2.44% 14
Myanmar (Burma) Myanmar (Burma) 88 +1.15% 10
Montenegro Montenegro 93 -1.06% 5
Mongolia Mongolia 87 -3.33% 11
Northern Mariana Islands Northern Mariana Islands 70 -30% 28
Mozambique Mozambique 95 +1.06% 3
Mauritania Mauritania 84 +1.2% 14
Mauritius Mauritius 66 -18.5% 31
Malawi Malawi 90 0% 8
Malaysia Malaysia 81 +2.53% 17
Namibia Namibia 88 +1.15% 10
New Caledonia New Caledonia 47 +95.8% 39
Niger Niger 86 0% 12
Nigeria Nigeria 93 +2.2% 5
Nicaragua Nicaragua 86 -1.15% 12
Norway Norway 82 -5.75% 16
Nepal Nepal 93 +1.09% 5
Nauru Nauru 79 -14.1% 19
New Zealand New Zealand 87 0% 11
Oman Oman 44 -27.9% 41
Pakistan Pakistan 95 +1.06% 3
Panama Panama 74 -2.63% 24
Peru Peru 84 -2.33% 14
Philippines Philippines 78 -2.5% 20
Palau Palau 71 -29% 27
Papua New Guinea Papua New Guinea 73 0% 25
Puerto Rico Puerto Rico 81 -1.22% 17
North Korea North Korea 87 -1.14% 11
Portugal Portugal 64 -5.88% 33
Paraguay Paraguay 73 +8.96% 25
Palestinian Territories Palestinian Territories 86 -6.52% 12
French Polynesia French Polynesia 78 -14.3% 20
Qatar Qatar 77 +2.67% 21
Romania Romania 84 +3.7% 14
Russia Russia 67 +11.7% 30
Rwanda Rwanda 89 +2.3% 9
Saudi Arabia Saudi Arabia 90 0% 8
Sudan Sudan 66 -25% 31
Senegal Senegal 90 +11.1% 8
Singapore Singapore 73 -6.41% 25
Solomon Islands Solomon Islands 94 -2.08% 4
Sierra Leone Sierra Leone 92 +1.1% 6
El Salvador El Salvador 86 -2.27% 12
Somalia Somalia 91 -2.15% 7
Serbia Serbia 84 -1.18% 14
South Sudan South Sudan 82 -2.38% 16
São Tomé & Príncipe São Tomé & Príncipe 79 +12.9% 19
Suriname Suriname 73 +1.39% 25
Slovakia Slovakia 89 +1.14% 9
Slovenia Slovenia 72 -2.7% 26
Sweden Sweden 87 +2.35% 11
Eswatini Eswatini 83 +5.06% 15
Sint Maarten Sint Maarten 100 0% 1
Seychelles Seychelles 50 +11.1% 38
Syria Syria 93 -3.13% 5
Chad Chad 83 +1.22% 15
Togo Togo 86 -1.15% 12
Thailand Thailand 81 -4.71% 17
Tajikistan Tajikistan 92 0% 6
Timor-Leste Timor-Leste 94 +2.17% 4
Tonga Tonga 100 0% 1
Trinidad & Tobago Trinidad & Tobago 71 -1.39% 27
Tunisia Tunisia 93 +10.7% 5
Turkey Turkey 80 0% 18
Tuvalu Tuvalu 65 -2.99% 32
Tanzania Tanzania 96 0% 2
Uganda Uganda 90 +2.27% 8
Ukraine Ukraine 77 +2.67% 21
Uruguay Uruguay 73 +1.39% 25
United States United States 72 -5.26% 26
Uzbekistan Uzbekistan 88 -1.12% 10
St. Vincent & Grenadines St. Vincent & Grenadines 60 0% 36
Venezuela Venezuela 83 -1.19% 15
Vietnam Vietnam 89 -1.11% 9
Vanuatu Vanuatu 89 -1.11% 9
Yemen Yemen 90 +1.12% 8
South Africa South Africa 76 -3.8% 22
Zambia Zambia 93 +1.09% 5
Zimbabwe Zimbabwe 89 -1.11% 9

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.TBS.CURE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.TBS.CURE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))