Tuberculosis case detection rate (%, all forms)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 66 -4.35% 35
Angola Angola 52 -5.45% 49
Albania Albania 71 +5.97% 31
Andorra Andorra 87 0% 16
United Arab Emirates United Arab Emirates 87 0% 16
Argentina Argentina 87 -6.45% 16
Armenia Armenia 56 -8.2% 45
Antigua & Barbuda Antigua & Barbuda 87 0% 16
Australia Australia 87 0% 16
Austria Austria 87 0% 16
Azerbaijan Azerbaijan 54 -5.26% 47
Burundi Burundi 62 +5.08% 39
Belgium Belgium 29 -66.7% 58
Benin Benin 60 +3.45% 41
Burkina Faso Burkina Faso 88 +15.8% 15
Bangladesh Bangladesh 80 +14.3% 22
Bulgaria Bulgaria 80 0% 22
Bahrain Bahrain 87 0% 16
Bahamas Bahamas 87 0% 16
Bosnia & Herzegovina Bosnia & Herzegovina 59 +5.36% 42
Belarus Belarus 62 -6.06% 39
Belize Belize 74 +8.82% 28
Bermuda Bermuda 87 0% 16
Bolivia Bolivia 73 +15.9% 29
Brazil Brazil 89 +2.3% 14
Barbados Barbados 87 0% 16
Brunei Brunei 87 0% 16
Bhutan Bhutan 65 +4.84% 36
Botswana Botswana 29 -34.1% 58
Central African Republic Central African Republic 53 +1.92% 48
Canada Canada 97 +11.5% 7
Switzerland Switzerland 87 0% 16
Chile Chile 87 0% 16
China China 76 +13.4% 26
Côte d’Ivoire Côte d’Ivoire 59 +1.72% 42
Cameroon Cameroon 59 +3.51% 42
Congo - Kinshasa Congo - Kinshasa 77 +1.32% 25
Congo - Brazzaville Congo - Brazzaville 63 +1.61% 38
Colombia Colombia 83 +22.1% 20
Comoros Comoros 36 0% 56
Cape Verde Cape Verde 80 0% 22
Costa Rica Costa Rica 94 +22.1% 9
Cuba Cuba 87 -12.1% 16
Cayman Islands Cayman Islands 87 0% 16
Cyprus Cyprus 110 +26.4% 4
Czechia Czechia 87 0% 16
Germany Germany 110 +20.9% 4
Dominica Dominica 38 55
Denmark Denmark 80 -8.05% 22
Dominican Republic Dominican Republic 93 +8.14% 10
Algeria Algeria 86 +6.17% 17
Ecuador Ecuador 80 -4.76% 22
Egypt Egypt 88 +20.5% 15
Eritrea Eritrea 99 +19.3% 6
Spain Spain 140 +60.9% 2
Estonia Estonia 87 0% 16
Ethiopia Ethiopia 72 0% 30
Finland Finland 93 +6.9% 10
Fiji Fiji 64 -31.9% 37
France France 83 0% 20
Micronesia (Federated States of) Micronesia (Federated States of) 80 0% 22
Gabon Gabon 53 +3.92% 48
United Kingdom United Kingdom 100 +12.4% 5
Georgia Georgia 62 -7.46% 39
Ghana Ghana 44 +15.8% 51
Guinea Guinea 80 -1.23% 22
Gambia Gambia 72 +9.09% 30
Guinea-Bissau Guinea-Bissau 34 -12.8% 57
Equatorial Guinea Equatorial Guinea 72 +24.1% 30
Greece Greece 87 0% 16
Grenada Grenada 87 +222% 16
Greenland Greenland 87 0% 16
Guatemala Guatemala 80 -8.05% 22
Guam Guam 87 0% 16
Guyana Guyana 80 0% 22
Hong Kong SAR China Hong Kong SAR China 87 0% 16
Honduras Honduras 80 +14.3% 22
Croatia Croatia 190 +118% 1
Haiti Haiti 68 +7.94% 33
Hungary Hungary 87 0% 16
Indonesia Indonesia 74 +12.1% 28
India India 85 +7.59% 18
Ireland Ireland 87 0% 16
Iran Iran 76 +5.56% 26
Iraq Iraq 74 +10.4% 28
Iceland Iceland 110 +26.4% 4
Israel Israel 87 0% 16
Italy Italy 100 +14.9% 5
Jamaica Jamaica 92 +1.1% 11
Jordan Jordan 65 +20.4% 36
Japan Japan 87 0% 16
Kazakhstan Kazakhstan 67 -2.9% 34
Kenya Kenya 77 +14.9% 25
Kyrgyzstan Kyrgyzstan 53 -10.2% 48
Cambodia Cambodia 55 -6.78% 46
Kiribati Kiribati 80 0% 22
St. Kitts & Nevis St. Kitts & Nevis 87 0% 16
South Korea South Korea 94 0% 9
Kuwait Kuwait 87 0% 16
Laos Laos 90 +9.76% 13
Lebanon Lebanon 87 0% 16
Liberia Liberia 44 +2.33% 51
Libya Libya 54 +5.88% 47
St. Lucia St. Lucia 87 0% 16
Sri Lanka Sri Lanka 65 +14% 36
Lesotho Lesotho 42 +13.5% 53
Lithuania Lithuania 87 0% 16
Luxembourg Luxembourg 87 0% 16
Macao SAR China Macao SAR China 87 0% 16
Morocco Morocco 94 +6.82% 9
Moldova Moldova 93 +2.2% 10
Madagascar Madagascar 64 0% 37
Maldives Maldives 56 +3.7% 45
Mexico Mexico 73 +1.39% 29
Marshall Islands Marshall Islands 80 0% 22
North Macedonia North Macedonia 83 +13.7% 20
Mali Mali 73 +4.29% 29
Malta Malta 87 0% 16
Myanmar (Burma) Myanmar (Burma) 43 -6.52% 52
Montenegro Montenegro 69 -13.8% 32
Mongolia Mongolia 18 0% 60
Northern Mariana Islands Northern Mariana Islands 87 0% 16
Mozambique Mozambique 96 +3.23% 8
Mauritania Mauritania 65 0% 36
Mauritius Mauritius 66 -14.3% 35
Malawi Malawi 75 +7.14% 27
Malaysia Malaysia 61 -4.69% 40
Namibia Namibia 67 +4.69% 34
New Caledonia New Caledonia 87 0% 16
Niger Niger 80 +9.59% 22
Nigeria Nigeria 74 +27.6% 28
Nicaragua Nicaragua 73 +1.39% 29
Netherlands Netherlands 87 0% 16
Norway Norway 86 -1.15% 17
Nepal Nepal 54 0% 47
Nauru Nauru 87 0% 16
New Zealand New Zealand 87 0% 16
Oman Oman 87 0% 16
Pakistan Pakistan 69 +9.52% 32
Panama Panama 80 0% 22
Peru Peru 54 -1.82% 47
Philippines Philippines 78 +27.9% 24
Palau Palau 87 0% 16
Papua New Guinea Papua New Guinea 91 +13.8% 12
Poland Poland 110 +26.4% 4
Puerto Rico Puerto Rico 87 0% 16
North Korea North Korea 58 -4.92% 43
Portugal Portugal 92 +5.75% 11
Paraguay Paraguay 87 -13% 16
Palestinian Territories Palestinian Territories 80 0% 22
French Polynesia French Polynesia 87 0% 16
Qatar Qatar 87 0% 16
Romania Romania 87 0% 16
Russia Russia 100 +1.01% 5
Rwanda Rwanda 120 +30.4% 3
Saudi Arabia Saudi Arabia 91 0% 12
Sudan Sudan 53 -26.4% 48
Senegal Senegal 84 +13.5% 19
Singapore Singapore 87 0% 16
Solomon Islands Solomon Islands 80 0% 22
Sierra Leone Sierra Leone 92 +13.6% 11
El Salvador El Salvador 80 0% 22
Somalia Somalia 42 0% 53
Serbia Serbia 110 0% 4
South Sudan South Sudan 92 +16.5% 11
São Tomé & Príncipe São Tomé & Príncipe 41 -14.6% 54
Suriname Suriname 67 -4.29% 34
Slovakia Slovakia 87 0% 16
Slovenia Slovenia 87 0% 16
Sweden Sweden 87 0% 16
Eswatini Eswatini 53 -5.36% 48
Sint Maarten Sint Maarten 87 0% 16
Seychelles Seychelles 87 0% 16
Syria Syria 85 +7.59% 18
Turks & Caicos Islands Turks & Caicos Islands 87 0% 16
Chad Chad 59 +3.51% 42
Togo Togo 110 0% 4
Thailand Thailand 71 +5.97% 31
Tajikistan Tajikistan 54 +1.89% 47
Timor-Leste Timor-Leste 87 +13% 16
Tonga Tonga 87 0% 16
Trinidad & Tobago Trinidad & Tobago 87 0% 16
Tunisia Tunisia 68 -6.85% 33
Turkey Turkey 81 0% 21
Tuvalu Tuvalu 55 -37.5% 46
Tanzania Tanzania 76 -3.8% 26
Uganda Uganda 90 -10% 13
Ukraine Ukraine 47 +2.17% 50
Uruguay Uruguay 87 0% 16
United States United States 87 0% 16
Uzbekistan Uzbekistan 68 -1.45% 33
St. Vincent & Grenadines St. Vincent & Grenadines 28 -36.4% 59
Venezuela Venezuela 81 +5.19% 21
Vietnam Vietnam 57 -1.72% 44
Vanuatu Vanuatu 76 +16.9% 26
Yemen Yemen 58 +3.57% 43
South Africa South Africa 79 +8.22% 23
Zambia Zambia 93 +2.2% 10
Zimbabwe Zimbabwe 56 +3.7% 45

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.TBS.DTEC.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.TBS.DTEC.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))