Total reserves minus gold (current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 14,242,892,505 +2.16% 61
Albania Albania 6,228,580,528 -0.00002% 80
United Arab Emirates United Arab Emirates 231,690,115,820 +25.5% 9
Argentina Argentina 24,380,645,449 +28.4% 50
Armenia Armenia 3,685,220,143 +2.15% 95
Antigua & Barbuda Antigua & Barbuda 358,440,632 -1.63% 128
Australia Australia 54,455,310,269 -3.8% 36
Austria Austria 11,918,528,062 -5.76% 66
Azerbaijan Azerbaijan 12,699,124,300 -7.63% 65
Belgium Belgium 22,374,333,716 -13.1% 52
Bangladesh Bangladesh 20,196,792,193 -3.49% 55
Bulgaria Bulgaria 40,269,659,586 -7.69% 42
Bahrain Bahrain 4,557,337,759 -5.22% 90
Bosnia & Herzegovina Bosnia & Herzegovina 9,126,638,850 +0.228% 73
Belarus Belarus 4,392,189,758 -3.16% 91
Belize Belize 498,087,321 +5.14% 124
Bolivia Bolivia 87,151,700 -63.8% 135
Brazil Brazil 318,856,510,332 -7.96% 8
Brunei Brunei 4,032,248,416 -3.57% 92
Bhutan Bhutan 932,629,244 +44% 116
Botswana Botswana 3,455,661,776 -27.3% 98
Canada Canada 119,778,473,397 +1.89% 18
Switzerland Switzerland 822,130,485,596 +3.42% 3
Chile Chile 44,382,397,504 -4.27% 39
China China 3,264,803,869,739 -1.11% 1
Colombia Colombia 61,505,803,384 +4.73% 34
Comoros Comoros 322,435,665 -0.288% 130
Cape Verde Cape Verde 783,105,558 +1.45% 118
Costa Rica Costa Rica 14,177,018,014 +7.2% 62
Cyprus Cyprus 921,268,672 +6.22% 117
Czechia Czechia 141,988,317,940 -2.98% 17
Germany Germany 96,792,003,856 -3.59% 21
Djibouti Djibouti 348,725,427 -30.5% 129
Dominica Dominica 155,971,242 -15% 134
Denmark Denmark 102,822,670,523 -2.03% 20
Dominican Republic Dominican Republic 13,423,522,737 -13.4% 63
Algeria Algeria 68,448,330,429 -1.81% 32
Ecuador Ecuador 4,703,151,586 +74.3% 87
Egypt Egypt 34,277,830,660 +38.8% 46
Spain Spain 84,153,911,869 -0.313% 26
Estonia Estonia 2,053,834,340 -20.3% 106
Ethiopia Ethiopia 3,784,387,425 +86.6% 94
Finland Finland 14,321,732,953 +4.7% 60
Fiji Fiji 1,596,997,610 +3.28% 109
France France 78,428,799,614 -0.975% 30
United Kingdom United Kingdom 148,569,354,567 -5.57% 16
Georgia Georgia 3,848,485,592 -23.1% 93
Greece Greece 5,609,616,295 -6.86% 83
Grenada Grenada 423,263,144 +4.73% 125
Guatemala Guatemala 23,834,241,452 +14.3% 51
Guyana Guyana 1,009,772,164 +12.8% 114
Honduras Honduras 7,977,882,379 +6.41% 75
Croatia Croatia 3,335,632,833 +5.02% 100
Haiti Haiti 2,565,745,293 +4.03% 104
Hungary Hungary 37,193,970,854 -5.73% 44
Indonesia Indonesia 149,117,682,033 +5.65% 15
India India 569,544,279,505 -0.864% 4
Ireland Ireland 11,687,942,512 -3.46% 68
Iraq Iraq 87,047,970,882 -15.3% 24
Iceland Iceland 6,236,489,889 +9.85% 79
Israel Israel 214,543,676,670 +4.83% 13
Italy Italy 84,874,502,826 +0.0649% 25
Jordan Jordan 15,929,034,365 +11% 59
Japan Japan 1,159,702,379,069 -6.37% 2
Kazakhstan Kazakhstan 21,979,739,005 +33.6% 54
Kenya Kenya 10,065,144,725 +37.1% 70
Kyrgyzstan Kyrgyzstan 1,890,318,643 +4.63% 107
Cambodia Cambodia 18,607,696,938 +8.45% 56
St. Kitts & Nevis St. Kitts & Nevis 294,747,745 +3.03% 132
South Korea South Korea 409,457,248,117 -1.1% 6
Kuwait Kuwait 44,103,517,198 -6.92% 40
Lebanon Lebanon 9,240,157,310 +9.09% 71
Libya Libya 80,591,801,678 -2.55% 29
St. Lucia St. Lucia 406,063,791 -4.3% 126
Sri Lanka Sri Lanka 6,054,549,136 +38.4% 82
Lesotho Lesotho 1,007,862,057 +18% 115
Lithuania Lithuania 6,918,508,682 +19.6% 77
Luxembourg Luxembourg 2,601,640,416 -8.03% 102
Latvia Latvia 4,582,765,661 +1.49% 89
Macao SAR China Macao SAR China 29,391,736,000 +5.84% 47
Morocco Morocco 35,278,753,636 +1.2% 45
Moldova Moldova 5,477,297,217 +0.534% 84
Madagascar Madagascar 2,784,591,093 +5.8% 101
Maldives Maldives 673,885,913 +14.1% 121
Mexico Mexico 221,944,176,978 +7.56% 11
North Macedonia North Macedonia 4,673,715,191 +2.54% 88
Malta Malta 1,401,984,072 +16.4% 111
Montenegro Montenegro 1,741,494,537 +10.7% 108
Mongolia Mongolia 4,891,417,145 +11.5% 86
Mozambique Mozambique 3,512,608,804 +4.05% 97
Mauritius Mauritius 7,464,581,565 +16.2% 76
Malaysia Malaysia 112,967,830,258 +1.88% 19
Namibia Namibia 3,355,524,015 +13.5% 99
Nigeria Nigeria 38,612,493,467 +20.5% 43
Nicaragua Nicaragua 6,104,867,094 +12.1% 81
Netherlands Netherlands 27,753,363,986 -5.02% 48
Norway Norway 81,241,559,662 +0.972% 28
New Zealand New Zealand 22,065,156,554 +42.5% 53
Oman Oman 17,722,180,397 +2.45% 57
Pakistan Pakistan 12,977,150,810 +37.4% 64
Panama Panama 6,855,505,288 +1.46% 78
Peru Peru 76,337,730,572 +10.5% 31
Philippines Philippines 95,250,799,159 +2.2% 22
Poland Poland 185,514,883,619 +9.13% 14
Portugal Portugal 10,331,816,204 +4.66% 69
Palestinian Territories Palestinian Territories 1,328,000,000 +0.363% 112
Qatar Qatar 44,692,252,847 -0.34% 38
Romania Romania 64,698,509,621 -2.16% 33
Rwanda Rwanda 2,406,450,702 +31.2% 105
Saudi Arabia Saudi Arabia 436,769,021,308 +0.0555% 5
Singapore Singapore 365,494,398,351 +6.07% 7
El Salvador El Salvador 3,589,659,290 +20.1% 96
Serbia Serbia 26,445,152,929 +6.12% 49
Suriname Suriname 1,530,494,164 +22.5% 110
Slovakia Slovakia 11,793,061,858 +28.4% 67
Slovenia Slovenia 2,566,300,985 +18.8% 103
Sweden Sweden 52,023,373,807 -0.958% 37
Seychelles Seychelles 773,677,576 +13.3% 119
Thailand Thailand 217,261,360,075 +4.31% 12
Timor-Leste Timor-Leste 736,966,607 -5.76% 120
Tonga Tonga 377,298,749 -4.85% 127
Trinidad & Tobago Trinidad & Tobago 5,437,606,534 -11.2% 85
Tunisia Tunisia 8,769,595,098 -0.187% 74
Turkey Turkey 90,858,657,478 -1.99% 23
Ukraine Ukraine 41,484,541,773 +7.15% 41
Uruguay Uruguay 17,369,289,710 +6.89% 58
United States United States 227,759,698,199 -2.71% 10
Uzbekistan Uzbekistan 9,144,960,133 -7.93% 72
St. Vincent & Grenadines St. Vincent & Grenadines 316,823,949 +12.9% 131
Vietnam Vietnam 83,081,854,928 -9.93% 27
Vanuatu Vanuatu 614,649,779 -4.52% 122
Samoa Samoa 507,740,281 +13.6% 123
Kosovo Kosovo 1,310,096,687 +5.19% 113
South Africa South Africa 54,912,456,859 +1.36% 35
Zimbabwe Zimbabwe 261,372,935 +253% 133

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'FI.RES.XGLD.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'FI.RES.XGLD.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))