Total reserves (includes gold, current US$)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 14,242,892,505 +2.16% 68
Albania Albania 6,515,581,528 +0.932% 82
United Arab Emirates United Arab Emirates 237,931,339,945 +25.6% 13
Argentina Argentina 29,559,610,351 +28.1% 55
Armenia Armenia 3,685,220,143 +2.15% 98
Antigua & Barbuda Antigua & Barbuda 358,440,632 -1.63% 130
Australia Australia 60,404,058,269 -2.11% 38
Austria Austria 35,405,646,262 +13.4% 52
Azerbaijan Azerbaijan 12,699,124,300 -7.63% 71
Belgium Belgium 41,449,463,816 +1.56% 48
Bangladesh Bangladesh 21,394,795,733 -2.13% 61
Bulgaria Bulgaria 43,698,277,896 -5.69% 46
Bahrain Bahrain 4,948,702,759 -3.3% 92
Bosnia & Herzegovina Bosnia & Herzegovina 9,418,858,050 +2.32% 74
Belarus Belarus 8,912,194,598 +9.79% 76
Belize Belize 498,087,321 +5.14% 125
Bolivia Bolivia 1,977,025,889 +9.84% 109
Brazil Brazil 329,732,443,813 -7.12% 10
Brunei Brunei 4,414,307,817 -1.53% 94
Bhutan Bhutan 941,017,689 +43.8% 118
Botswana Botswana 3,455,661,776 -27.3% 99
Canada Canada 119,778,473,397 +1.89% 22
Switzerland Switzerland 909,365,744,096 +5.26% 4
Chile Chile 44,403,009,394 -4.26% 44
China China 3,456,024,808,739 +0.188% 1
Colombia Colombia 61,897,968,642 +4.84% 37
Comoros Comoros 323,945,586 -0.19% 132
Cape Verde Cape Verde 783,105,558 -6.54% 119
Costa Rica Costa Rica 14,177,018,014 +7.2% 69
Cyprus Cyprus 2,087,536,372 +16.7% 107
Czechia Czechia 146,281,239,762 -1.41% 21
Germany Germany 377,935,574,356 +17.1% 9
Djibouti Djibouti 348,725,427 -30.5% 131
Dominica Dominica 155,971,242 -15% 135
Denmark Denmark 108,405,100,883 -0.883% 24
Dominican Republic Dominican Republic 13,471,257,813 -13.3% 70
Algeria Algeria 83,007,108,429 +2.2% 30
Ecuador Ecuador 6,907,743,955 +55.5% 80
Egypt Egypt 44,921,341,018 +35.8% 43
Spain Spain 107,774,094,169 +4.54% 25
Estonia Estonia 2,074,707,140 -20% 108
Ethiopia Ethiopia 3,784,387,425 +86.6% 96
Finland Finland 17,992,736,653 +6.28% 64
Fiji Fiji 1,599,606,710 +3.31% 112
France France 282,857,002,814 +17.5% 12
United Kingdom United Kingdom 174,597,843,325 -1.86% 18
Georgia Georgia 4,447,216,641 -11.1% 93
Greece Greece 15,221,540,695 +11.9% 66
Grenada Grenada 423,263,144 +4.73% 127
Guatemala Guatemala 24,412,418,012 +14.6% 57
Guyana Guyana 1,009,772,164 +12.8% 116
Honduras Honduras 8,036,257,489 +6.53% 78
Croatia Croatia 3,335,632,833 +5.02% 101
Haiti Haiti 2,717,628,883 +5.07% 105
Hungary Hungary 46,422,357,554 +1.54% 41
Indonesia Indonesia 155,708,275,548 +6.39% 19
India India 643,042,560,626 +2.43% 5
Ireland Ireland 12,697,664,212 -1.61% 72
Iraq Iraq 100,690,954,782 -10.3% 27
Iceland Iceland 6,402,950,469 +10.2% 83
Israel Israel 214,543,676,670 +4.83% 17
Italy Italy 290,547,246,726 +17.4% 11
Jordan Jordan 21,939,099,362 +15.1% 60
Japan Japan 1,230,666,979,042 -4.94% 2
Kazakhstan Kazakhstan 45,807,523,139 +27.4% 42
Kenya Kenya 10,066,607,177 +37.1% 73
Kyrgyzstan Kyrgyzstan 5,088,723,594 +57.2% 91
Cambodia Cambodia 22,505,568,573 +12.6% 58
St. Kitts & Nevis St. Kitts & Nevis 294,747,745 +3.03% 134
South Korea South Korea 418,218,648,902 -0.644% 7
Kuwait Kuwait 50,727,942,998 -3.59% 40
Lebanon Lebanon 33,301,277,510 +21.1% 53
Libya Libya 92,893,708,178 +0.505% 28
St. Lucia St. Lucia 406,063,791 -4.3% 128
Sri Lanka Sri Lanka 6,093,946,546 +38.3% 85
Lesotho Lesotho 1,007,862,057 +18% 117
Lithuania Lithuania 7,406,410,382 +20.1% 79
Luxembourg Luxembourg 2,789,495,616 -6.31% 103
Latvia Latvia 5,141,113,061 +3.72% 90
Macao SAR China Macao SAR China 29,391,736,000 +5.84% 56
Morocco Morocco 37,133,907,723 +2.22% 51
Moldova Moldova 5,483,515,867 +0.558% 88
Madagascar Madagascar 2,784,591,093 +5.8% 104
Maldives Maldives 673,885,913 +14.1% 122
Mexico Mexico 232,035,392,465 +8.27% 15
North Macedonia North Macedonia 5,251,936,214 +4.72% 89
Malta Malta 1,417,638,672 +15.9% 113
Montenegro Montenegro 1,741,494,537 +10.7% 110
Mongolia Mongolia 5,507,944,031 +12.1% 87
Mozambique Mozambique 3,842,855,301 +5.66% 95
Mauritius Mauritius 8,506,134,285 +17.4% 77
Malaysia Malaysia 116,229,205,258 +2.44% 23
Namibia Namibia 3,355,524,015 +13.5% 100
Nigeria Nigeria 38,612,493,467 +20.5% 50
Nicaragua Nicaragua 6,104,867,094 +12.1% 84
Netherlands Netherlands 79,129,152,086 +13.3% 33
Norway Norway 81,241,559,662 +0.972% 31
New Zealand New Zealand 22,065,156,554 +42.5% 59
Oman Oman 18,286,526,118 +4.77% 63
Pakistan Pakistan 18,407,745,861 +34.1% 62
Panama Panama 6,855,505,288 +1.46% 81
Peru Peru 79,246,042,708 +11% 32
Philippines Philippines 106,195,050,244 +2.36% 26
Poland Poland 223,114,909,804 +15.1% 16
Portugal Portugal 42,434,182,604 +20.4% 47
Palestinian Territories Palestinian Territories 1,328,000,000 +0.363% 114
Qatar Qatar 53,987,415,590 +4.75% 39
Romania Romania 73,391,248,091 +0.536% 34
Rwanda Rwanda 2,406,450,702 +31.2% 106
Saudi Arabia Saudi Arabia 463,869,589,071 +1.29% 6
Singapore Singapore 383,945,953,551 +6.7% 8
El Salvador El Salvador 3,704,746,691 +20.3% 97
Serbia Serbia 30,484,164,151 +10.6% 54
Suriname Suriname 1,632,317,813 +21.3% 111
Slovakia Slovakia 14,451,734,758 +28% 67
Slovenia Slovenia 2,832,429,185 +19.5% 102
Sweden Sweden 62,569,356,007 +2.8% 36
Seychelles Seychelles 773,677,576 +13.3% 120
Thailand Thailand 236,933,974,075 +5.55% 14
Timor-Leste Timor-Leste 736,966,607 -5.76% 121
Tonga Tonga 377,298,749 -4.85% 129
Trinidad & Tobago Trinidad & Tobago 5,601,120,709 -10.5% 86
Tunisia Tunisia 9,343,597,098 +1.12% 75
Turkey Turkey 154,773,780,178 +9.87% 20
Ukraine Ukraine 43,780,549,773 +8.07% 45
Uruguay Uruguay 17,377,698,943 +6.9% 65
United States United States 910,036,546,652 +17.7% 3
Uzbekistan Uzbekistan 41,236,890,133 +19.3% 49
St. Vincent & Grenadines St. Vincent & Grenadines 316,823,949 +12.9% 133
Vietnam Vietnam 83,081,854,928 -9.93% 29
Vanuatu Vanuatu 614,649,779 -4.52% 123
Samoa Samoa 507,740,281 +13.6% 124
Kosovo Kosovo 1,310,096,687 +5.19% 115
South Africa South Africa 65,434,957,159 +4.71% 35
Zimbabwe Zimbabwe 484,972,805 +320% 126

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'FI.RES.TOTL.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'FI.RES.TOTL.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))