Total natural resources rents (% of GDP)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0.00207 -32% 175
Afghanistan Afghanistan 0.429 +40.1% 131
Angola Angola 30 +48% 10
Albania Albania 1.44 +86.1% 102
Andorra Andorra 0 180
United Arab Emirates United Arab Emirates 17.6 +47.3% 29
Argentina Argentina 2.65 +85.6% 85
Armenia Armenia 7.05 +191% 57
American Samoa American Samoa 0 180
Antigua & Barbuda Antigua & Barbuda 0 180
Australia Australia 13.4 +119% 35
Austria Austria 0.118 +66.3% 148
Azerbaijan Azerbaijan 29.9 +130% 11
Burundi Burundi 14 +0.791% 34
Belgium Belgium 0.0449 +57.6% 158
Benin Benin 2.3 -5.09% 87
Burkina Faso Burkina Faso 20.1 +119% 23
Bangladesh Bangladesh 0.61 +8.77% 122
Bulgaria Bulgaria 0.918 +48.3% 115
Bahrain Bahrain 16.6 +55.5% 32
Bahamas Bahamas 0.0148 -23.2% 165
Bosnia & Herzegovina Bosnia & Herzegovina 0.813 +4.12% 118
Belarus Belarus 1.86 +22.5% 95
Belize Belize 0.523 +9.21% 126
Bermuda Bermuda 0 180
Bolivia Bolivia 9.47 +248% 46
Brazil Brazil 7.94 +146% 51
Barbados Barbados 0.328 +137% 137
Brunei Brunei 24.3 +76.6% 17
Bhutan Bhutan 2.73 -2.11% 84
Botswana Botswana 1.04 +53.8% 112
Central African Republic Central African Republic 10.3 +3.79% 43
Canada Canada 4.95 +299% 70
Switzerland Switzerland 0.00911 +13.4% 168
Chile Chile 16.9 +208% 30
China China 1.71 +97.7% 99
Côte d’Ivoire Côte d’Ivoire 4.74 +82.7% 71
Cameroon Cameroon 5.53 +27.3% 65
Congo - Kinshasa Congo - Kinshasa 38.8 +144% 3
Congo - Brazzaville Congo - Brazzaville 37.7 +43.8% 4
Colombia Colombia 5.32 +109% 67
Comoros Comoros 1.63 +1.83% 100
Cape Verde Cape Verde 17.7 +52.4% 28
Costa Rica Costa Rica 0.763 -15.6% 119
Curaçao Curaçao 0 180
Cayman Islands Cayman Islands 0 180
Cyprus Cyprus 0.0128 +60.9% 167
Czechia Czechia 0.395 -5.18% 133
Germany Germany 0.0771 +0.442% 155
Djibouti Djibouti 0.277 -14% 142
Dominica Dominica 0.0331 -28.6% 161
Denmark Denmark 0.339 +109% 136
Dominican Republic Dominican Republic 2.08 +67.6% 90
Algeria Algeria 22.6 +61% 19
Ecuador Ecuador 6.7 +129% 59
Egypt Egypt 5.14 +57.8% 69
Spain Spain 0.115 +202% 149
Estonia Estonia 1.72 +20.3% 98
Ethiopia Ethiopia 5.87 +6.72% 63
Finland Finland 0.448 +55% 129
Fiji Fiji 2.25 +55.2% 88
France France 0.0325 +22.2% 162
Faroe Islands Faroe Islands 0 180
Micronesia (Federated States of) Micronesia (Federated States of) 0.0178 -11.1% 164
Gabon Gabon 18.5 +37% 25
United Kingdom United Kingdom 0.589 +107% 123
Georgia Georgia 1.39 +50.1% 104
Ghana Ghana 13.3 +57.3% 36
Guinea Guinea 4.52 -6.38% 72
Gambia Gambia 2.86 -5.85% 83
Guinea-Bissau Guinea-Bissau 10.4 -6.48% 42
Equatorial Guinea Equatorial Guinea 23.5 +40.9% 18
Greece Greece 0.0875 +125% 152
Grenada Grenada 0 180
Guatemala Guatemala 1.93 +42.6% 92
Guam Guam 0 180
Guyana Guyana 33.7 +142% 7
Hong Kong SAR China Hong Kong SAR China 0.000993 +11.8% 176
Honduras Honduras 1.22 -0.706% 108
Croatia Croatia 0.681 +55.1% 120
Haiti Haiti 0.328 -43.3% 138
Hungary Hungary 0.402 +96.6% 132
Indonesia Indonesia 5.16 +111% 68
India India 3.16 +77% 81
Ireland Ireland 0.101 +175% 151
Iran Iran 30.4 +31% 9
Iraq Iraq 43.4 +58.5% 2
Iceland Iceland 0.000107 -1.68% 179
Israel Israel 0.441 +62% 130
Italy Italy 0.112 +100% 150
Jamaica Jamaica 0.458 +41.9% 128
Jordan Jordan 0.0777 +50.3% 154
Japan Japan 0.0473 -51.2% 157
Kazakhstan Kazakhstan 26.8 +109% 15
Kenya Kenya 1.23 -3.22% 107
Kyrgyzstan Kyrgyzstan 11.5 +76.3% 39
Cambodia Cambodia 0.835 -11.1% 116
Kiribati Kiribati 0.0435 -23.7% 159
St. Kitts & Nevis St. Kitts & Nevis 0 180
South Korea South Korea 0.0498 -56% 156
Laos Laos 5.38 +91% 66
Lebanon Lebanon 0.00276 +23.5% 173
Liberia Liberia 21.9 +25.5% 20
Libya Libya 61 +432% 1
St. Lucia St. Lucia 0.0134 -30.6% 166
Sri Lanka Sri Lanka 0.0832 -2.11% 153
Lesotho Lesotho 4.32 -5.22% 74
Lithuania Lithuania 0.286 -7.93% 140
Luxembourg Luxembourg 0.00475 -28.7% 169
Latvia Latvia 1.17 -8.59% 110
Macao SAR China Macao SAR China 0.000725 -21.6% 177
Morocco Morocco 0.392 +32.3% 134
Monaco Monaco 0 180
Moldova Moldova 0.236 -4.07% 143
Madagascar Madagascar 5.53 -2.27% 64
Maldives Maldives 0.0037 -26.3% 170
Mexico Mexico 3.64 +134% 80
Marshall Islands Marshall Islands 0 180
North Macedonia North Macedonia 0.137 -5.55% 146
Mali Mali 18.4 +94.5% 26
Malta Malta 0 180
Myanmar (Burma) Myanmar (Burma) 8.68 +86.1% 49
Montenegro Montenegro 0.637 -11.9% 121
Mongolia Mongolia 33.1 +146% 8
Mozambique Mozambique 14.9 +25.7% 33
Mauritania Mauritania 11.4 +369% 40
Mauritius Mauritius 0.00272 +3.24% 174
Malawi Malawi 4.22 +3.01% 75
Malaysia Malaysia 6.92 +52.4% 58
Namibia Namibia 4.03 +109% 76
New Caledonia New Caledonia 16.8 +131,956% 31
Niger Niger 6.41 +15.1% 61
Nigeria Nigeria 8.55 +68.5% 50
Nicaragua Nicaragua 3.84 +132% 78
Netherlands Netherlands 0.341 +307% 135
Norway Norway 10 +140% 44
Nepal Nepal 0.499 -4.53% 127
Nauru Nauru 0 180
New Zealand New Zealand 1.49 +17.4% 101
Oman Oman 29.2 +54.7% 12
Pakistan Pakistan 1.44 +27.7% 103
Panama Panama 3.66 +585% 79
Peru Peru 12.7 +220% 38
Philippines Philippines 1.97 +158% 91
Palau Palau 0 180
Papua New Guinea Papua New Guinea 27.4 +129% 13
Poland Poland 1.03 +92.4% 113
Puerto Rico Puerto Rico 0 180
Portugal Portugal 0.291 +45.5% 139
Paraguay Paraguay 1.35 -19.9% 105
Palestinian Territories Palestinian Territories 0 180
French Polynesia French Polynesia 0.00357 -12% 171
Qatar Qatar 27.3 +34.9% 14
Romania Romania 1.14 +125% 111
Russia Russia 18.5 +144% 24
Rwanda Rwanda 4.02 -2.13% 77
Saudi Arabia Saudi Arabia 25.6 +47.6% 16
Sudan Sudan 12.8 +37.2% 37
Senegal Senegal 4.4 +53.4% 73
Singapore Singapore 0.000181 -25.2% 178
Solomon Islands Solomon Islands 18.4 -4.16% 27
Sierra Leone Sierra Leone 9.04 +9.81% 48
El Salvador El Salvador 0.535 -30% 125
Somalia Somalia 11.2 -1.92% 41
Serbia Serbia 1.75 +84.3% 97
São Tomé & Príncipe São Tomé & Príncipe 1.88 -4.84% 94
Suriname Suriname 9.59 +108% 45
Slovakia Slovakia 0.226 +3.16% 144
Slovenia Slovenia 0.189 -11.6% 145
Sweden Sweden 1.21 +226% 109
Eswatini Eswatini 3 -11.3% 82
Seychelles Seychelles 0.121 -8.25% 147
Turks & Caicos Islands Turks & Caicos Islands 0.00327 -21.6% 172
Chad Chad 21.3 +53.2% 21
Togo Togo 7.86 +66.2% 52
Thailand Thailand 1.82 +63.8% 96
Tajikistan Tajikistan 9.05 +76.2% 47
Timor-Leste Timor-Leste 34.7 +0.978% 6
Tonga Tonga 0.0408 +4.38% 160
Trinidad & Tobago Trinidad & Tobago 7.86 +33.6% 53
Tunisia Tunisia 2.25 +53.3% 89
Turkey Turkey 0.827 +108% 117
Tuvalu Tuvalu 0 180
Tanzania Tanzania 6.69 +73.8% 60
Uganda Uganda 7.48 -1.16% 55
Ukraine Ukraine 7.51 +587% 54
Uruguay Uruguay 1.93 -15.9% 93
United States United States 1.28 +288% 106
Uzbekistan Uzbekistan 20.5 +125% 22
St. Vincent & Grenadines St. Vincent & Grenadines 0.0193 -24.6% 163
Vietnam Vietnam 2.55 +40.7% 86
Vanuatu Vanuatu 0.568 -9.76% 124
Samoa Samoa 0.28 -7.08% 141
Kosovo Kosovo 0.929 +129% 114
South Africa South Africa 7.33 +82.4% 56
Zambia Zambia 35.3 +117% 5
Zimbabwe Zimbabwe 6.4 +34.8% 62

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.TOTL.RT.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.TOTL.RT.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))