Total greenhouse gas emissions excluding LULUCF (% change from 1990)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 155 +8.9% 57
Afghanistan Afghanistan 135 +5.27% 66
Angola Angola 112 +1.39% 79
Albania Albania -33.2 +3.76% 179
United Arab Emirates United Arab Emirates 237 +0.101% 28
Argentina Argentina 44.1 -7.5% 121
Armenia Armenia -55.4 -3.38% 197
American Samoa American Samoa 14.9 0% 143
Antigua & Barbuda Antigua & Barbuda 57.8 +12.9% 116
Australia Australia 24.2 +2.6% 137
Austria Austria -9.37 +49.3% 160
Azerbaijan Azerbaijan -7.8 -40% 159
Burundi Burundi 144 +1.29% 63
Belgium Belgium -24.3 +20.9% 170
Benin Benin 333 +0.662% 13
Burkina Faso Burkina Faso 207 +1.91% 41
Bangladesh Bangladesh 116 +1.95% 76
Bulgaria Bulgaria -48.4 +27.7% 194
Bahrain Bahrain 119 +3.67% 72
Bahamas Bahamas 56.9 +14.3% 117
Bosnia & Herzegovina Bosnia & Herzegovina -10.4 +32.8% 163
Belarus Belarus -39.8 +4.75% 188
Belize Belize 94.8 +6.9% 92
Bermuda Bermuda 34.4 +23.1% 129
Bolivia Bolivia 86.3 +7.05% 101
Brazil Brazil 93.6 +0.268% 94
Barbados Barbados 15 +40.5% 142
Brunei Brunei 106 +4.51% 83
Bhutan Bhutan 160 +1.9% 56
Botswana Botswana 38.4 +9.97% 125
Central African Republic Central African Republic 65.6 -9.53% 112
Canada Canada 28.5 +1.49% 134
Switzerland Switzerland -20.5 +1.05% 167
Chile Chile 109 -5.84% 82
China China 311 +6.95% 15
Côte d’Ivoire Côte d’Ivoire 213 +0.0699% 38
Cameroon Cameroon 31.9 -1.16% 131
Congo - Kinshasa Congo - Kinshasa 120 +1.71% 70
Congo - Brazzaville Congo - Brazzaville 118 -0.194% 74
Colombia Colombia 66.3 +13.8% 111
Comoros Comoros 131 +0.958% 67
Cape Verde Cape Verde 477 -2.79% 7
Costa Rica Costa Rica 71 +8.59% 109
Cuba Cuba -36.3 -4.92% 184
Cayman Islands Cayman Islands 202 +7.9% 43
Cyprus Cyprus 90.6 +5.33% 95
Czechia Czechia -42.8 +12.5% 191
Germany Germany -44.8 +16.9% 192
Djibouti Djibouti 15.6 +3.78% 141
Dominica Dominica 84.8 +6.81% 102
Denmark Denmark -39.4 +5.4% 187
Dominican Republic Dominican Republic 180 +6.81% 50
Algeria Algeria 89.5 -5.03% 97
Ecuador Ecuador 93.8 +9% 93
Egypt Egypt 128 +1.41% 69
Eritrea Eritrea 36.9 +1.94% 127
Spain Spain -4.15 -273% 155
Estonia Estonia -67.7 +4.17% 202
Ethiopia Ethiopia 171 +3.08% 53
Finland Finland -39.8 +19.9% 189
Fiji Fiji 54 +8.38% 118
France France -27.7 +26.2% 175
Faroe Islands Faroe Islands 9.03 +2.44% 146
Micronesia (Federated States of) Micronesia (Federated States of) 1,100 +1.12% 3
Gabon Gabon 4.92 -257% 147
United Kingdom United Kingdom -50.1 +7.68% 195
Georgia Georgia -54.5 -1.4% 196
Ghana Ghana 365 +0.161% 11
Gibraltar Gibraltar 351 +2.59% 12
Guinea Guinea 267 +3.34% 21
Gambia Gambia 99.1 -3.04% 88
Guinea-Bissau Guinea-Bissau 81 -0.119% 106
Equatorial Guinea Equatorial Guinea 3,674 -15% 1
Greece Greece -30.1 +15% 177
Grenada Grenada 116 +8.14% 77
Greenland Greenland 956 +1.12% 5
Guatemala Guatemala 236 +5.72% 31
Guam Guam 13.2 +12.5% 144
Guyana Guyana 118 -2.08% 75
Hong Kong SAR China Hong Kong SAR China 2.48 -183% 150
Honduras Honduras 151 +6.27% 59
Croatia Croatia -25.2 -0.273% 171
Haiti Haiti 86.4 +2.33% 100
Hungary Hungary -37 +10.3% 185
Indonesia Indonesia 202 +6.28% 42
India India 199 +9.4% 46
Ireland Ireland 1.05 -80.7% 152
Iran Iran 200 +5.78% 45
Iraq Iraq 111 -1.3% 80
Iceland Iceland -5.44 +488% 156
Israel Israel 90.3 -2.98% 96
Italy Italy -26.9 +26.7% 174
Jamaica Jamaica -11.3 -32.9% 164
Jordan Jordan 175 +8.05% 51
Japan Japan -21 +31.8% 168
Kazakhstan Kazakhstan -7.68 +2.17% 158
Kenya Kenya 182 +5.6% 49
Kyrgyzstan Kyrgyzstan -35 -2.3% 181
Cambodia Cambodia 147 +4.22% 62
Kiribati Kiribati 290 +4.09% 17
St. Kitts & Nevis St. Kitts & Nevis 191 +8.52% 47
South Korea South Korea 101 -4.22% 86
Kuwait Kuwait 232 +2.21% 32
Laos Laos 424 +6.18% 9
Lebanon Lebanon 218 +4.35% 35
Liberia Liberia 165 -1.12% 54
Libya Libya 10.2 +357% 145
St. Lucia St. Lucia 207 +6.77% 40
Sri Lanka Sri Lanka 82.1 +4.41% 104
Lesotho Lesotho 22.7 -9.54% 138
Lithuania Lithuania -55.7 +0.463% 198
Luxembourg Luxembourg -39.1 +5.54% 186
Latvia Latvia -59.5 +0.788% 200
Macao SAR China Macao SAR China 210 +4.65% 39
Morocco Morocco 151 +0.236% 60
Moldova Moldova -63.8 -2.41% 201
Madagascar Madagascar 38.6 -1.54% 124
Maldives Maldives 2,176 +3.56% 2
Mexico Mexico 61.7 +9.93% 113
Marshall Islands Marshall Islands 28.6 0% 133
North Macedonia North Macedonia -21.1 -10.8% 169
Mali Mali 261 +1.95% 23
Malta Malta -18.3 +20.7% 166
Myanmar (Burma) Myanmar (Burma) 70.8 -6.4% 110
Mongolia Mongolia 225 +40.9% 33
Northern Mariana Islands Northern Mariana Islands 45 0% 120
Mozambique Mozambique 284 -1.87% 19
Mauritania Mauritania 148 +0.722% 61
Mauritius Mauritius 236 +5.42% 29
Malawi Malawi 236 +8.76% 30
Malaysia Malaysia 252 +4.3% 25
Namibia Namibia 96.6 +1.73% 90
New Caledonia New Caledonia 243 +7.74% 26
Niger Niger 293 +4.7% 16
Nigeria Nigeria 38.4 +4.86% 126
Nicaragua Nicaragua 103 +4.1% 84
Netherlands Netherlands -32.5 +16.8% 178
Norway Norway 3.74 -20.5% 148
Nepal Nepal 86.9 +3.86% 99
Nauru Nauru 20 0% 139
New Zealand New Zealand 18.2 +6.77% 140
Oman Oman 265 +2.44% 22
Pakistan Pakistan 164 -1.1% 55
Panama Panama 202 +24.8% 44
Peru Peru 111 +3.89% 81
Philippines Philippines 153 +8.11% 58
Palau Palau -35.9 -4.48% 183
Papua New Guinea Papua New Guinea 137 +2.48% 64
Poland Poland -29.1 +28.9% 176
Puerto Rico Puerto Rico -26.1 -17.3% 173
North Korea North Korea -46.2 -5.44% 193
Portugal Portugal -9.42 +140% 161
Paraguay Paraguay 100 +0.0851% 87
French Polynesia French Polynesia 45 +11.2% 119
Qatar Qatar 487 +8.39% 6
Romania Romania -56.1 +3.92% 199
Russia Russia -12.8 -11.4% 165
Rwanda Rwanda 34.5 +0.972% 128
Saudi Arabia Saudi Arabia 240 +3.31% 27
Sudan Sudan 129 +1.31% 68
Senegal Senegal 190 +0.266% 48
Singapore Singapore 120 +6.41% 71
Solomon Islands Solomon Islands 135 +4.89% 65
Sierra Leone Sierra Leone 72.5 +0.382% 108
El Salvador El Salvador 81.2 +9.93% 105
Somalia Somalia 27.1 +2.02% 136
São Tomé & Príncipe São Tomé & Príncipe 269 +5.08% 20
Suriname Suriname 60.4 +5.97% 115
Slovakia Slovakia -40.5 +2.39% 190
Slovenia Slovenia -25.4 +27.5% 172
Sweden Sweden -34.6 +4.05% 180
Eswatini Eswatini 2.19 +182% 151
Seychelles Seychelles 322 +3.75% 14
Syria Syria -35 -4.32% 182
Turks & Caicos Islands Turks & Caicos Islands 1,099 +5.2% 4
Chad Chad 456 +5.88% 8
Togo Togo 221 +1.89% 34
Thailand Thailand 103 -0.758% 85
Tajikistan Tajikistan -2.6 -29.6% 153
Turkmenistan Turkmenistan 61.1 -2.66% 114
Timor-Leste Timor-Leste 287 -0.548% 18
Tonga Tonga 75.7 +5.59% 107
Trinidad & Tobago Trinidad & Tobago 115 -3.26% 78
Tunisia Tunisia 87.7 +5.94% 98
Turkey Turkey 174 +2.01% 52
Tuvalu Tuvalu 33.3 0% 130
Tanzania Tanzania 213 +3.79% 37
Uganda Uganda 254 +0.764% 24
Ukraine Ukraine -77.7 +0.0508% 203
Uruguay Uruguay 42.3 -4.01% 122
United States United States -4 +52.4% 154
Uzbekistan Uzbekistan 30.4 -3.41% 132
St. Vincent & Grenadines St. Vincent & Grenadines 95.6 +7.43% 91
Venezuela Venezuela -6.69 -43.7% 157
British Virgin Islands British Virgin Islands 214 +7.07% 36
U.S. Virgin Islands U.S. Virgin Islands 3.39 0% 149
Vietnam Vietnam 402 +13.7% 10
Vanuatu Vanuatu 41.9 +6.17% 123
Samoa Samoa 119 +3.06% 73
Yemen Yemen 84.2 -5.95% 103
South Africa South Africa 28.3 -8.66% 135
Zambia Zambia 96.9 +4.45% 89
Zimbabwe Zimbabwe -9.69 -26.4% 162

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.TOT.ZG.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.TOT.ZG.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))