Total debt service (% of GNI)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.253 +38.3% 114
Angola Angola 16.3 +3.04% 8
Albania Albania 3.65 -3.32% 65
Argentina Argentina 7.24 +26.7% 29
Armenia Armenia 11.8 +12.9% 13
Azerbaijan Azerbaijan 2.65 +20.2% 82
Burundi Burundi 1.68 +68.7% 97
Benin Benin 4.87 +63.8% 46
Burkina Faso Burkina Faso 4.41 -25.9% 52
Bangladesh Bangladesh 1.64 +15.6% 99
Bosnia & Herzegovina Bosnia & Herzegovina 6.11 +46.7% 36
Belarus Belarus 11.3 +17.7% 15
Belize Belize 3.86 +36.4% 62
Bolivia Bolivia 3.9 -30.6% 60
Brazil Brazil 10.7 +60.8% 16
Bhutan Bhutan 4.86 +1.15% 47
Botswana Botswana 1.28 +46.8% 105
Central African Republic Central African Republic 1.41 +75.7% 102
China China 2.13 -9.87% 90
Côte d’Ivoire Côte d’Ivoire 4.64 +51.3% 50
Cameroon Cameroon 3.53 -15.6% 69
Congo - Kinshasa Congo - Kinshasa 0.756 +22.5% 111
Congo - Brazzaville Congo - Brazzaville 5.31 -14.8% 43
Colombia Colombia 8 -1.83% 24
Comoros Comoros 1.31 +249% 104
Cape Verde Cape Verde 6.47 +23.4% 33
Costa Rica Costa Rica 6.31 +56.1% 35
Djibouti Djibouti 2.52 +17.8% 84
Dominica Dominica 7.16 +9.45% 30
Dominican Republic Dominican Republic 4.46 +35.7% 51
Algeria Algeria 0.192 +41% 115
Ecuador Ecuador 5.62 +20.5% 40
Egypt Egypt 5.65 +45.1% 39
Fiji Fiji 4.26 +4.07% 55
Gabon Gabon 6.33 +108% 34
Georgia Georgia 12.5 -12.7% 12
Ghana Ghana 1.71 -73.6% 95
Guinea Guinea 1.49 +38.5% 101
Gambia Gambia 2.33 +22.2% 87
Guinea-Bissau Guinea-Bissau 2.76 -17.3% 79
Grenada Grenada 4.67 +0.422% 49
Guatemala Guatemala 1.71 -61.3% 96
Guyana Guyana 2.72 +70.7% 80
Honduras Honduras 5.49 -5.09% 41
Haiti Haiti 0.324 +40% 113
Indonesia Indonesia 4.38 -25.5% 53
India India 2.29 +15.1% 88
Iran Iran 0.0894 +99.6% 117
Iraq Iraq 1.66 +2.49% 98
Jamaica Jamaica 12.7 +43.3% 10
Jordan Jordan 7.66 -19.7% 28
Kazakhstan Kazakhstan 19 -12.9% 7
Kenya Kenya 3.65 +23.2% 66
Kyrgyzstan Kyrgyzstan 7.87 +53% 25
Cambodia Cambodia 5.94 -8.52% 38
Laos Laos 8.36 +8.46% 21
Lebanon Lebanon 21.8 +15.4% 4
Liberia Liberia 3.02 +40.7% 76
St. Lucia St. Lucia 3.07 +27.4% 75
Sri Lanka Sri Lanka 3.48 -24.6% 70
Lesotho Lesotho 5.07 +74.4% 44
Morocco Morocco 4.07 -12.8% 58
Moldova Moldova 7.79 +64.7% 27
Madagascar Madagascar 1.72 +18.9% 94
Maldives Maldives 8.55 -32.7% 20
Mexico Mexico 3.1 -21% 74
North Macedonia North Macedonia 11.6 +42.8% 14
Mali Mali 1.52 +5.81% 100
Myanmar (Burma) Myanmar (Burma) 1.39 -10.1% 103
Montenegro Montenegro 10.3 -31.6% 18
Mongolia Mongolia 26.8 +4.33% 2
Mozambique Mozambique 22.7 -31.3% 3
Mauritania Mauritania 3.68 +2.04% 64
Mauritius Mauritius 12.6 +97.8% 11
Malawi Malawi 1.22 +6.36% 106
Niger Niger 1.16 -42.6% 107
Nigeria Nigeria 2.61 +51.8% 83
Nicaragua Nicaragua 13.8 -18.4% 9
Nepal Nepal 1.16 +40.6% 108
Pakistan Pakistan 4.82 +6.95% 48
Peru Peru 5.42 +67.3% 42
Philippines Philippines 2.68 +27.1% 81
Papua New Guinea Papua New Guinea 19.6 +31.4% 6
Paraguay Paraguay 4.36 -17% 54
Rwanda Rwanda 3.88 +45.1% 61
Sudan Sudan 0.533 +43% 112
Senegal Senegal 9.05 +25.2% 19
Solomon Islands Solomon Islands 1.77 +142% 93
Sierra Leone Sierra Leone 2.44 +42.7% 85
El Salvador El Salvador 29 +157% 1
Somalia Somalia 3.32 +1,592% 72
Serbia Serbia 7.86 -12.4% 26
São Tomé & Príncipe São Tomé & Príncipe 0.942 -35.1% 110
Suriname Suriname 20.6 +87% 5
Eswatini Eswatini 3.92 +101% 59
Syria Syria 0.149 +229% 116
Chad Chad 2.2 -7.36% 89
Togo Togo 2.8 -7.22% 78
Thailand Thailand 8.27 +47.3% 22
Tajikistan Tajikistan 3.78 +5.84% 63
Turkmenistan Turkmenistan 1.93 -1.16% 92
Timor-Leste Timor-Leste 1.03 +109% 109
Tonga Tonga 3.17 +55.8% 73
Tunisia Tunisia 10.5 +10.2% 17
Turkey Turkey 6.9 -10.6% 32
Tanzania Tanzania 2.89 +7.89% 77
Uganda Uganda 4.99 +139% 45
Ukraine Ukraine 4.2 -34.8% 57
Uzbekistan Uzbekistan 8.24 +4.75% 23
St. Vincent & Grenadines St. Vincent & Grenadines 3.55 +0.652% 68
Vietnam Vietnam 6.96 +4.45% 31
Vanuatu Vanuatu 1.99 +6.72% 91
Samoa Samoa 4.23 -12.5% 56
Kosovo Kosovo 2.41 -24.7% 86
South Africa South Africa 6.1 -11.9% 37
Zambia Zambia 3.61 -32.4% 67
Zimbabwe Zimbabwe 3.34 +135% 71

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.TDS.DECT.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.TDS.DECT.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))