Taxes less subsidies on products (current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 921,543,850 -11.1% 116
Albania Albania 3,590,492,030 +19.1% 80
Andorra Andorra 371,353,915 +11.7% 125
Argentina Argentina 105,575,592,027 +3% 15
Armenia Armenia 2,580,602,704 -0.531% 86
Australia Australia 108,553,472,644 +1.3% 14
Austria Austria 54,208,962,760 +3.91% 21
Azerbaijan Azerbaijan 7,272,352,941 +8.74% 63
Belgium Belgium 63,247,170,883 +2.18% 19
Benin Benin 2,041,905,833 +8.41% 94
Burkina Faso Burkina Faso 1,995,015,948 +13.5% 98
Bangladesh Bangladesh 14,950,122,421 +3.88% 46
Bulgaria Bulgaria 14,437,640,015 +14.5% 47
Bahamas Bahamas 1,952,500,000 +0.159% 99
Bosnia & Herzegovina Bosnia & Herzegovina 4,453,817,403 +2.72% 72
Belarus Belarus 9,681,805,636 +9.04% 51
Brazil Brazil 300,265,484,924 +8.3% 6
Brunei Brunei -247,417,638 -6.5% 143
Botswana Botswana 1,054,326,213 +7.12% 112
Central African Republic Central African Republic 331,538,813 +15.8% 127
Canada Canada 150,062,828,700 +1.79% 11
Switzerland Switzerland 24,507,680,906 +7.83% 39
Chile Chile 32,776,784,175 -3.32% 32
Côte d’Ivoire Côte d’Ivoire 7,939,951,401 +8.69% 60
Cameroon Cameroon 3,605,525,513 +4.72% 79
Congo - Kinshasa Congo - Kinshasa 2,341,775,245 -2.22% 92
Congo - Brazzaville Congo - Brazzaville 854,709,775 +3.35% 117
Colombia Colombia 39,618,261,919 +10.8% 27
Comoros Comoros 59,068,075 +4.11% 141
Cape Verde Cape Verde 427,684,548 +12.9% 124
Costa Rica Costa Rica 7,577,789,043 +13.1% 61
Cyprus Cyprus 4,209,505,461 +6.35% 75
Czechia Czechia 30,257,141,011 +7.81% 36
Germany Germany 439,249,477,067 +11.4% 2
Djibouti Djibouti 261,502,917 +4.32% 131
Dominica Dominica 116,825,926 +5.34% 139
Denmark Denmark 48,207,481,305 +4.52% 22
Dominican Republic Dominican Republic 8,711,482,624 +6.26% 54
Ecuador Ecuador 8,546,045,200 +21.5% 56
Egypt Egypt 18,647,457,250 -6.11% 41
Spain Spain 153,412,278,119 +8.58% 10
Estonia Estonia 5,356,015,793 +10% 69
Finland Finland 37,407,069,000 +2.1% 29
Fiji Fiji 1,243,208,809 +20.5% 109
France France 335,820,338,377 +8.65% 5
Gabon Gabon 1,134,149,922 +12.9% 111
United Kingdom United Kingdom 361,299,503,958 +13.6% 4
Georgia Georgia 4,294,345,316 +6.93% 74
Ghana Ghana 5,478,868,100 +5.01% 67
Guinea Guinea 1,921,085,366 +13.1% 100
Gambia Gambia 181,452,419 +16.9% 134
Guinea-Bissau Guinea-Bissau 95,412,154 +4.52% 140
Equatorial Guinea Equatorial Guinea 132,133,144 +11% 138
Greece Greece 34,260,666,909 +10.5% 31
Grenada Grenada 251,015,059 +4.96% 132
Guatemala Guatemala 7,522,652,077 +9.15% 62
Guyana Guyana 732,438,976 +47.3% 121
Honduras Honduras 3,652,162,188 +6.6% 78
Croatia Croatia 15,739,184,931 +12.6% 44
Haiti Haiti 622,520,057 +4.18% 122
Hungary Hungary 31,250,304,788 +8.87% 34
Indonesia Indonesia 60,053,912,243 +0.0963% 20
India India 365,028,988,917 +11.5% 3
Ireland Ireland 32,247,564,793 +7.71% 33
Iran Iran 11,599,251,437 +8% 50
Iceland Iceland 3,685,057,795 +12.2% 77
Israel Israel 47,744,353,012 +15.6% 23
Italy Italy 252,976,127,917 +7.41% 7
Jamaica Jamaica 3,434,048,860 +2.69% 82
Jordan Jordan 6,716,389,014 +2.6% 64
Kazakhstan Kazakhstan 18,581,424,528 -4.13% 42
Kenya Kenya 8,256,790,583 -5.17% 59
Kyrgyzstan Kyrgyzstan 2,536,074,655 +6.92% 87
Cambodia Cambodia 2,817,197,528 +6.43% 85
St. Kitts & Nevis St. Kitts & Nevis 140,362,963 +3.56% 137
Kuwait Kuwait -11,530,048,461 -0.889% 146
Laos Laos 1,757,081,754 +18.9% 103
Libya Libya -2,050,780,927 +0.256% 145
St. Lucia St. Lucia 336,951,852 +7.15% 126
Sri Lanka Sri Lanka 8,611,774,118 +64.5% 55
Lesotho Lesotho 328,211,833 +10.2% 129
Lithuania Lithuania 8,863,308,427 +11.6% 53
Luxembourg Luxembourg 8,336,464,064 +10.1% 58
Latvia Latvia 5,628,390,344 +8.77% 65
Morocco Morocco 17,951,910,194 +23.1% 43
Moldova Moldova 2,520,206,619 +9.98% 88
Madagascar Madagascar 1,448,009,415 +19.1% 106
Maldives Maldives 983,205,412 +2.32% 115
Mexico Mexico 118,868,329,107 +10.1% 13
North Macedonia North Macedonia 2,033,868,443 -0.031% 95
Mali Mali 1,906,216,365 +11.8% 101
Malta Malta 1,843,573,028 +17.2% 102
Montenegro Montenegro 1,700,134,795 +13.9% 104
Mongolia Mongolia 2,447,219,447 +26.7% 89
Mozambique Mozambique 2,413,885,247 -3.83% 90
Mauritania Mauritania 822,893,923 +13% 118
Mauritius Mauritius 2,027,591,489 +8.47% 97
Malawi Malawi 745,643,319 -13.4% 120
Malaysia Malaysia 4,973,237,637 +10.7% 70
Namibia Namibia 1,255,223,491 +14.4% 108
Niger Niger 584,581,798 +17.4% 123
Nigeria Nigeria 5,550,657,565 -20.8% 66
Nicaragua Nicaragua 2,206,374,137 +12.9% 93
Netherlands Netherlands 124,106,826,927 +8.78% 12
Norway Norway 44,276,975,572 +3.28% 24
Nepal Nepal 4,928,714,863 +5.71% 71
Oman Oman -794,538,362 +31.1% 144
Pakistan Pakistan 21,971,681,514 +24.1% 40
Panama Panama 2,032,461,200 -0.0549% 96
Peru Peru 25,966,287,052 +28.3% 37
Papua New Guinea Papua New Guinea 1,372,134,384 -5.77% 107
Poland Poland 101,518,218,903 +29.6% 16
Portugal Portugal 40,805,608,374 +8.53% 25
Paraguay Paraguay 3,582,513,861 +12.6% 81
Qatar Qatar 1,137,637,363 +10.2% 110
Romania Romania 35,322,307,759 +15.7% 30
Russia Russia 195,877,452,894 -4.33% 8
Rwanda Rwanda 983,822,992 -1.52% 114
Saudi Arabia Saudi Arabia 67,635,200,000 +7.11% 17
Senegal Senegal 3,215,472,008 +3.58% 83
Singapore Singapore 30,468,638,329 +17.4% 35
Sierra Leone Sierra Leone 185,449,002 +6.82% 133
El Salvador El Salvador 4,294,940,000 +9.34% 73
Serbia Serbia 13,412,399,943 +12.5% 49
São Tomé & Príncipe São Tomé & Príncipe 58,280,662 +12.9% 142
Slovakia Slovakia 13,455,794,637 +16.3% 48
Slovenia Slovenia 8,349,992,737 +9.48% 57
Sweden Sweden 63,391,090,728 +2.68% 18
Seychelles Seychelles 329,603,867 -0.487% 128
Turks & Caicos Islands Turks & Caicos Islands 308,510,000 +13.7% 130
Chad Chad 809,979,657 +18.9% 119
Togo Togo 989,144,308 +8.16% 113
Turkey Turkey 154,042,350,550 +21.5% 9
Tanzania Tanzania 15,329,195,432 -0.984% 45
Uganda Uganda 3,975,398,665 +6.63% 76
Ukraine Ukraine 25,269,149,972 +14.8% 38
Uruguay Uruguay 9,357,619,008 +4.29% 52
United States United States 626,659,000,000 +6.32% 1
Uzbekistan Uzbekistan 5,371,669,727 +7.79% 68
St. Vincent & Grenadines St. Vincent & Grenadines 169,307,407 +7.65% 136
Vietnam Vietnam 38,756,317,701 +8.11% 28
Samoa Samoa 171,269,059 +3.85% 135
Kosovo Kosovo 2,358,892,410 +13.4% 91
South Africa South Africa 40,006,748,884 +3.5% 26
Zambia Zambia 1,470,255,766 -8.79% 105
Zimbabwe Zimbabwe 3,089,654,546 +22.1% 84

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.TAX.NIND.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.TAX.NIND.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))