Tariff rate, applied, weighted mean, manufactured products (%)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Angola Angola 8.5 +3.79% 38
Albania Albania 0.15 -80.8% 108
Argentina Argentina 7.8 +1.04% 43
Australia Australia 1.04 +22.4% 94
Austria Austria 1.64 +14.7% 89
Azerbaijan Azerbaijan 6.03 -3.98% 54
Burundi Burundi 6.78 +7.45% 46
Belgium Belgium 1.64 +14.7% 89
Benin Benin 8.51 -0.468% 37
Burkina Faso Burkina Faso 7.81 -1.88% 42
Bangladesh Bangladesh 12.9 -3% 11
Bulgaria Bulgaria 1.64 +14.7% 89
Bahrain Bahrain 2.95 +3.51% 75
Bahamas Bahamas 18.6 -24.3% 2
Bosnia & Herzegovina Bosnia & Herzegovina 2.29 +7.01% 79
Belize Belize 10.9 +5.4% 20
Bermuda Bermuda 21.9 +5% 1
Bolivia Bolivia 5.33 -2.02% 57
Brazil Brazil 8.68 -4.72% 36
Barbados Barbados 11.7 +36.1% 16
Brunei Brunei 0.05 +66.7% 110
Bhutan Bhutan 4.17 +32% 65
Botswana Botswana 2.16 +209% 80
Central African Republic Central African Republic 12.6 -24.7% 12
Canada Canada 0.76 -57.1% 101
Switzerland Switzerland 0.12 -36.8% 109
Chile Chile 0.48 +4.35% 104
China China 2.45 -4.67% 76
Côte d’Ivoire Côte d’Ivoire 8.33 -6.09% 39
Cameroon Cameroon 17.5 +27.2% 4
Congo - Brazzaville Congo - Brazzaville 17.9 +80.1% 3
Colombia Colombia 2.98 +12.5% 74
Cape Verde Cape Verde 10.7 +27.6% 21
Costa Rica Costa Rica 0.83 -6.74% 98
Cuba Cuba 10.1 -2.71% 23
Cyprus Cyprus 1.64 +14.7% 89
Czechia Czechia 1.64 +14.7% 89
Germany Germany 1.64 +14.7% 89
Denmark Denmark 1.64 +14.7% 89
Dominican Republic Dominican Republic 4.2 -4.11% 63
Algeria Algeria 9.95 -4.51% 24
Ecuador Ecuador 6.59 +10.9% 48
Spain Spain 1.64 +14.7% 89
Estonia Estonia 1.64 +14.7% 89
Finland Finland 1.64 +14.7% 89
France France 1.64 +14.7% 89
Gabon Gabon 15.6 +10.5% 6
United Kingdom United Kingdom 0.71 +2.9% 102
Georgia Georgia 0.19 -24% 106
Ghana Ghana 11.7 +18.3% 18
Guinea Guinea 11.7 +3.81% 17
Gambia Gambia 15.3 -14.3% 8
Guinea-Bissau Guinea-Bissau 9.12 -11.8% 32
Equatorial Guinea Equatorial Guinea 16.3 +12.2% 5
Greece Greece 1.64 +14.7% 89
Grenada Grenada 12 +32.5% 14
Guatemala Guatemala 1.98 +11.2% 83
Guyana Guyana 8.25 +108% 40
Hong Kong SAR China Hong Kong SAR China 0 111
Honduras Honduras 1.71 -36.2% 88
Croatia Croatia 1.64 +14.7% 89
Hungary Hungary 1.64 +14.7% 89
Indonesia Indonesia 1.74 +3.57% 87
India India 6.22 -8.39% 50
Ireland Ireland 1.64 +14.7% 89
Iceland Iceland 0 111
Israel Israel 1.78 -8.72% 86
Italy Italy 1.64 +14.7% 89
Jamaica Jamaica 9.28 +1.64% 28
Jordan Jordan 3.4 -2.58% 70
Japan Japan 0.85 -17.5% 97
Kazakhstan Kazakhstan 3.09 +33.2% 73
Kenya Kenya 9.07 +17% 34
Cambodia Cambodia 9.16 +44.9% 31
South Korea South Korea 1.79 +55.7% 85
Kuwait Kuwait 4.21 +32% 62
Laos Laos 1.03 -16.3% 95
Liberia Liberia 5.78 -5.09% 55
Lesotho Lesotho 4.19 -6.05% 64
Lithuania Lithuania 1.64 +14.7% 89
Latvia Latvia 1.64 +14.7% 89
Macao SAR China Macao SAR China 0 111
Moldova Moldova 1.14 +6.54% 93
Madagascar Madagascar 9.8 +21.9% 25
Maldives Maldives 12.6 +5.9% 12
Mexico Mexico 1.78 +29.9% 86
North Macedonia North Macedonia 1.48 +7.25% 91
Mali Mali 9.19 +25.5% 30
Malta Malta 1.64 +14.7% 89
Myanmar (Burma) Myanmar (Burma) 0.66 -31.3% 103
Montenegro Montenegro 1.24 +1.64% 92
Mongolia Mongolia 4.7 +0.213% 60
Mauritania Mauritania 9.5 -5.66% 26
Mauritius Mauritius 0.79 -8.14% 100
Malaysia Malaysia 3.64 -6.19% 69
Namibia Namibia 3.81 +123% 68
Niger Niger 7.79 +1.96% 44
Nigeria Nigeria 9.21 -25.4% 29
Nicaragua Nicaragua 2.34 +12% 77
Netherlands Netherlands 1.64 +14.7% 89
Norway Norway 0.23 -11.5% 105
Nepal Nepal 11.1 -9.41% 19
New Zealand New Zealand 1.81 +96.7% 84
Oman Oman 2.14 +4.9% 81
Pakistan Pakistan 10.5 -9.79% 22
Panama Panama 4.12 -6.36% 66
Peru Peru 0.83 +2.47% 98
Philippines Philippines 0.9 +3.45% 96
Poland Poland 1.64 +14.7% 89
Portugal Portugal 1.64 +14.7% 89
Paraguay Paraguay 4.93 +2.71% 59
Qatar Qatar 3.85 +2.39% 67
Romania Romania 1.64 +14.7% 89
Rwanda Rwanda 6.23 -11.9% 49
Saudi Arabia Saudi Arabia 5.56 +32.4% 56
Senegal Senegal 8.83 -6.76% 35
Singapore Singapore 0 111
Solomon Islands Solomon Islands 12.2 +24.6% 13
Sierra Leone Sierra Leone 12 -4.09% 15
El Salvador El Salvador 2.3 +11.1% 78
Suriname Suriname 6.86 -8.04% 45
Slovakia Slovakia 1.64 +14.7% 89
Slovenia Slovenia 1.64 +14.7% 89
Sweden Sweden 1.64 +14.7% 89
Eswatini Eswatini 3.36 +16.7% 71
Seychelles Seychelles 0.17 +21.4% 107
Chad Chad 15.5 -3.6% 7
Togo Togo 14.7 +41.9% 9
Thailand Thailand 3.4 +52.5% 70
Tonga Tonga 7.85 -4.85% 41
Trinidad & Tobago Trinidad & Tobago 6.1 +1.16% 53
Turkey Turkey 3.33 +79% 72
Tanzania Tanzania 6.16 -3.45% 52
Uganda Uganda 6.17 -14.8% 51
Ukraine Ukraine 2.08 +8.33% 82
Uruguay Uruguay 6.62 -1.63% 47
United States United States 1.61 +2.55% 90
St. Vincent & Grenadines St. Vincent & Grenadines 9.46 +1.5% 27
Venezuela Venezuela 13.8 -10.1% 10
Vietnam Vietnam 0.82 -6.82% 99
Vanuatu Vanuatu 9.11 -2.25% 33
South Africa South Africa 5.31 +4.94% 58
Zambia Zambia 4.43 -17% 61

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.TAX.MANF.WM.AR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.TAX.MANF.WM.AR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))